
Hawkes Processes: Simulation, Estimation, and Validation
Patrick Laub, BE(Software, Hons. I)/BSc(Mathematics)

Supervised by Prof. Phil Pollett

A thesis submitted in partial fulfillment of the degree of
Bachelor of Science (Honours) in 2014

School of Mathematics and Physics

ii

iii

To Tiffles.
The wind rises. . . We must try to live!

iv

Acknowledgements
Firstly, I’d like to thank my supervisor and mentor Phil Pollett. Your influence has
been wise, reassuring, and monumental. If it weren’t for you I would not be in the
probability game at all! Also, I need to thank Thomas Taimre. Your generous im-
parting of knowledge ranged from Stochastic Loewner Evolution to the correct font
selection for differentials.

To my family, I apologise for the lack of frequent contact, and thank you for your
unerring support of my academic venture. In particular my aunt Mrs. Chris Brown
was pivotal to the creation of this thesis. Your willingness to read draft after draft
was a phenomenal help in motivating the writing/editing process, and I thank you
for it.

Finally, I’d like to thank all of my friends. Fig. 6.1a can be re-purposed to de-
scribe the rate at which I’ve accepted your invitations to events around semester
crunch periods. And thanks to my fellow honours students, who made the year very
enjoyable. I’ll end with the words of Ernest Rhys applied to our little dungeon in
the maths building:

“Strange things pass nightly in this little room,
All dreary as it looks by light of day;
Enchantment reigns here when at evening play
Red fire-light glimpses through the pallid gloom.”

v

vi

Contents

1 Introduction 1

2 Background 3

2.1 Counting and point processes 3

2.2 Poisson processes 5

2.3 Conditional intensity functions 6

2.4 Compensators 7

3 Literature Review 9

3.1 Hawkes process definition 9

3.2 Hawkes conditional intensity function 10

3.3 Immigration–birth representation 12

3.4� Covariance and power spectral densities 15

3.5 Generalisations of Hawkes processes 19

3.6� Financial applications 20

3.6.1� Financial contagion 20

3.6.2� Mid-price changes and high-frequency trading 22

4 Parameter Estimation 25

4.1 Likelihood function derivation 25

4.2 Simplifications for exponential decay 27

4.3 Discussion 29

5 Goodness of Fit 31

5.1 Transformation to a Poisson process 31

5.2 Tests for Poisson process 32

5.2.1 Basic tests 32

5.2.2 Test for independence 33

5.2.3 Lewis test 33

5.2.4� Brownian motion approximation test 34

6 Simulation Methods 39

vii

viii CONTENTS

6.1 Transformation methods 39
6.2 Ogata’s modified thinning algorithm 40
6.3 Superposition of Poisson processes 42
6.4 Other methods 44

7 Conclusion 45

A Extra Proof Details 53
A.1 Supplementary to Theorem 2 (part one) 53
A.2 Supplementary to Theorem 2 (part two) 54

B Open Source Contributions 55
B.1 R package: ‘Hawkes’ 55
B.2 Hawkes explanatory article 59

C MATLAB Implementations 61
C.1 Goodness of fit 61

C.1.1 Multiple tests 61
C.1.2 Brownian motion approximation 67

C.2 Simulation methods 72
C.2.1 Inhomogeneous Poisson process by thinning 72
C.2.2 Hawkes process by thinning 73
C.2.3 Hawkes process by clustering 74
C.2.4 Exact simulation of Hawkes process 76

List of Symbols
R+ Positive reals {x ∶ x ∈ R, x > 0}

1(⋅) Indicator function

Φ(x) Standard normal cumulative distribution function (c.d.f.)

Exp(r) Exponential distribution (with rate r)

Poi(r) Poisson distribution (with rate r)

Unif(a, b) Uniform distribution over [a, b]

a ∶= b Reads ‘a is defined as b’

N(t) The number of arrivals before time t (a counting process), page 3

H(t) The history of arrivals up to time u (a filtration), page 3

T = {T1, T2, . . .} The random time of arrivals (a point process), page 3

F ∗(t) The cumulative distribution function (c.d.f.) of the next arrival given the
previous arrival history, page 5

f∗(t) The conditional probability density function (p.d.f.) of the next arrival given
the previous arrival history, page 5

λ∗(t) The conditional intensity function, page 6

Λ(t) The compensator (or integrated conditional intensity function), page 7

λ The background intensity of the Hawkes process, page 9

µ(s) The excitation function for the Hawkes process, page 9

{t1, t2, . . . , tk} An observed sequence of arrival times, page 10

α Jump in intensity after arrival (exponential decay), page 11

β Intensity decay rate after arrival (exponential decay), page 11

n Branching ratio, page 12

ix

x CONTENTS

List of Acronyms
a.s. almost surely

c.d.f. cumulative distribution function

i.i.d. independent and identically distributed

p.d.f. probability density function

w.p. with probability

SDE stochastic differential equation

Q–Q quantile–quantile (plot)

xi

xii CONTENTS

Chapter 1

Introduction
It is expected that some types of events that are observed will naturally cluster in
time. An earthquake typically increases the geological tension of the region in which
it occurs, and aftershocks will likely follow (Ogata 1988). A fight between rival gangs
might ignite a spate of criminal retaliations (Mohler et al. 2011). Selling a significant
quantity of a stock could precipitate a trading flurry or, on a larger scale, the col-
lapse of a Wall Street investment bank could send shockwaves through the world’s
financial centres (Azizpour et al. 2010).

A mathematical model for these so-called ‘self-exciting’ processes is the Hawkes
process (Hawkes 1971a). The Hawkes process is a counting process that models a
sequence of ‘arrivals’ of some type over time, e.g. earthquakes, gang violence, trade
orders, or bank defaults. Each arrival excites the process in that the likelihood of a
subsequent arrival is increased for some time period after the initial arrival. As such,
it is a non-Markovian extension of the Poisson process.

As the Hawkes process literature in financial fields is particularly well developed,
applications in these areas are chiefly considered. Some datasets seem intuitively to
come from a self-exciting process, such as the number of companies defaulting on
loans each year (seen in Fig. 1.1a). Similarly, using a basic Poisson process to model
the arrival of trade orders to a stock is a highly unrealistic notion (an example Q–Q
plot failing this hypothesis is shown in Fig. 1.1b). This is because participants in
equity markets exhibit a herding behaviour, a standard example of economic reflex-
ivity (Filimonov and Sornette 2012).

Though the Hawkes process has been widely used in many fields it is often dif-
ficult to fit to a dataset. Current methods are computationally inefficient, biased,
convoluted, or rely on simplifying assumptions. The process of generating, model
fitting, and testing the goodness of fit of Hawkes processes is examined in this thesis.

The remainder of this thesis is structured as follows. Some background to Hawkes
processes is given in Chapter 2, and then the history of Hawkes processes up to the

1

2 CHAPTER 1. INTRODUCTION

1985 1990 1995 2000 2005 2010
0

50

100

150

200

250

300

Year

N
u
m
b
e
r
o
f
d
e
fa
u
lt
s

(a)

0.0345 0.035 0.0355
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Theoretical quantiles (millions)

S
a
m
p
le

q
u
a
nt
il
es

(m
il
li
o
n
s)

(b)

Figure 1.1: (a) Global corporate defaults 1981–2011. (b) Q–Q plot testing daily
traded volume of code ASX:ILC to be a Poisson random variables.

latest developments and applications in Chapter 3. Chapter 4 shows how one would
fit a Hawkes process to data and Chapter 5 describes how to test such a fit. Methods
for simulating realisations of Hawkes processes are outlined in Chapter 6 with Mat-
lab implementations included in the appendices. Finally, Chapter 7 summarises the
key insights into Hawkes processes examined in this thesis.

Sections 3.4, 3.6, and subsection 5.2.4 have been marked with a �. These sec-
tions require background knowledge, for example in spectral analysis and financial
mathematics (such as in Tankov 2003). These sections can be avoided without loss
of intelligibility. In a similar fashion, overly technical definitions and comments are
footnoted and lengthy segments of proofs are placed in Appendix A.

Chapter 2

Background

2.1 Counting and point processes

In order to precisely define the Hawkes processes, basic rules of point processes and
counting processes are developed. This chapter begins by introducing the definitions
of these two fundamental processes, building up to the Poisson process. Discussion
of the Poisson process is necessary as one can view the Hawkes process as a general-
isation of the (time-)inhomogeneous Poisson process. Note that only definitions for
the one-dimensional case are given, though many of these processes have a natural
extension to higher dimensions. To begin, consider:

Definition 1. Counting process
A counting process is a stochastic process (N(t) ∶ t ≥ 0) taking values in
N0 that satisfies N(0) = 0, is finite, and is a right-continuous step function
with jumps of size +1. Say that (H(u) ∶ u ≥ 0) is the history1 of the arrivals
up to time u.

A counting process can be viewed as a cumulative count of the number of ‘ar-
rivals’ into a system up to the current time. Another way to characterise such a
process is to consider the sequence of random arrival times T = {T1, T2, . . .} at which
the counting process N(⋅) has jumped. The process defined as these arrival times is
called a point process, described in Definition 2 (adapted from Carstensen 2010); see
Fig. 2.1 for an example point process and its associated counting process.

Definition 2. Point process
If a sequence of random variables T = {T1, T2, . . .}, taking values in R+ ∪
{∞}, has: P(0 < T0 ≤ T1 ≤ T2 ≤ . . .) = 1, P(Ti < Ti+1, Ti < ∞) = P(Ti < ∞)
for i ≥ 1, and the number of points in a bounded region is finite almost
surely (a.s.), then T is a (simple) point process.

1Strictly speaking H(⋅) is a filtration, i.e., an increasing sequence of σ-algebras.

3

4 CHAPTER 2. BACKGROUND

N(t)

t
t1 t2 t3 t4 t5

1

2

3

4

5

Figure 2.1: An example point process realisation {t1, t2, . . .} and corresponding
counting process N(t).

Note that point processes need not be restricted to the half-line. An equivalent
definition to Definition 2 is the random counting measure2. The definition is included
for completeness:

Definition 3. Random counting measure
Let (E,Σ) be a measurable space (typically E ⊂ Rd and Σ a σ-algebra over
E) and T1, . . . , Tn ∈ E be a collection of random points. Then N ∶ Σ → N
defined by

N(A) =
n

∑
i=1
1(Ti ∈ A)

is a random counting measure over E.

The point and counting process terminology is often interchangeable. For exam-
ple, if one refers to a Poisson process or a Hawkes process then, the reader must infer
from the context whether the counting process N(⋅) or the point process of times T
is being discussed.

2See Kallenberg 1976 for a complete treatment.

2.2. POISSON PROCESSES 5

A way to characterise a particular point process is to give the distribution function
of the next arrival time conditioned on the past. Given the history up until the last
arrival u, written as H(u), define (as per Ozaki 1979) the conditional c.d.f. (and
p.d.f.) of the next arrival time Tk+1 as

F ∗(t ∣H(u)) = ∫
t

u
P(Tk+1 ∈ [s + ds] ∣H(u)) ds = ∫

t

u
f∗(s ∣H(u)) ds .

The joint density for a realisation {t1, t2, . . . , tk} is then, by the chain rule,

f(t1, t2, . . . , tk) =
k

∏
i=1
f∗(ti ∣H(ti−1)) . (2.1)

In the literature the notation rarely conditions on these histories H(⋅) explicitly,
but instead places a superscript star over the function (e.g. see Daley and Vere-Jones
2003). As such these functions are instead written as F ∗(t) and f∗(t). This char-
acterisation provides a definition for various classes of point processes. If a point
process has a distribution f∗(t) which is independent of H(t) then the process is
called a renewal process. Another way to state this is that f∗(t) = g(t − tk) for some
p.d.f. g ∶ R+ → R+, so the interarrival times are independent and identically dis-
tributed (i.i.d.) random variables. For example, if these i.i.d. interarrival times are
exponentially distributed then the renewal process is called a homogeneous Poisson
process.

2.2 Poisson processes

Of particular interest to the study of Hawkes processes is the inhomogeneous Pois-
son process. Definition 4 describes how these processes are characterised. Again
remember that this is the one-dimensional definition, not the most general definition
of Poisson processes (see Kroese and Botev 2014 for the random measure definition
used in higher dimensions and for simulation techniques).

Definition 4. Poisson process
Say a process (N(t) ∶ t ≥ 0) is a counting process and that it satisfies ∀s < t
that N(t) −N(s) is independent of N(s) and that

P(N(t + h) −N(t) =m ∣N(t)) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

λ(t)h , m = 1

o(h) , m > 1

1 − λ(t)h + o(h) , m = 0

then N(t) is called a inhomogeneous Poisson process with λ ∶ R+ → R+

called the intensity function; though if λ(t) = λ for all t ≥ 0, N(t) is a
homogeneous Poisson process.

6 CHAPTER 2. BACKGROUND

2.3 Conditional intensity functions

Often it is difficult to work with the conditional arrival distribution. Instead an-
other characterisation of point processes is used, the conditional intensity function3.
Originally this function was called the hazard function (Cox 1955) and was defined
as

λ∗(t) = f∗(t)
1 − F ∗(t) . (2.2)

Although this definition is still valid, Definition 5 gives a more intuitive representa-
tion of the conditional intensity function as the expected rate of arrivals conditioned
on H(t).

Definition 5. Conditional intensity function
Consider a counting process N(⋅) with associated histories H(⋅). If a func-
tion λ∗(t) exists such that

λ∗(t) = lim
h↓0

E[N(t + h) −N(t) ∣H(t)]
h

that only relies on information of N(⋅) in the past4, then it is called the
conditional intensity function of N(⋅).

The terms ‘self-exciting’ and ‘self-regulating’ can be defined in terms of the con-
ditional intensity function. If an arrival causes the conditional intensity function
to rise then the process is said to be self-exciting. This behaviour causes temporal
clustering of T . In this setting λ∗(t) must be chosen to avoid explosion (defined as
N(t) =∞ for finite t with non-zero probability). See Fig. 2.2 for an example realisa-
tion of such a λ∗(t).

The opposite behaviour could be observed, in that the conditional intensity func-
tion drops after an arrival. This type of process is called self-regulating and the arrival
times appear quite temporally regular. Such processes are not examined in this doc-
ument, though a simple example would be the arrival of speeding tickets to a driver
over time (assuming each arrival causes a period of heightened caution when driving).

3Indeed if the conditional intensity function exists it uniquely characterises the finite-dimensional
distributions of the point process (see Proposition 7.2.IV Daley and Vere-Jones 2003).

4I.e. λ∗(t) is H(t)–measurable.

2.4. COMPENSATORS 7

λ∗(t)

tt1 t2 t3 t4 t5

λ

t6 t7

Figure 2.2: An example λ∗(t) for a self-exciting process.

2.4 Compensators

Frequently the integrated conditional intensity function is needed (e.g. in parameter
estimation and goodness of fit testing), hence it has been named:

Definition 6. Compensator
For a counting process N(⋅) the non-decreasing function

Λ(t) = ∫
t

0
λ∗(s) ds

is called the compensator of the counting process.

In fact a compensator is typically defined more subtly5 and exists6 even when
λ∗(⋅) does not exist. However for Hawkes processes λ∗(⋅) always exists (in fact, a
Hawkes process is defined by this function) and therefore Definition 6 is sufficient.

5Technically Λ(t) is the unique H(t) predictable function, with Λ(0) = 0, and is non-decreasing,
such that N(t) =M(t) +Λ(t) almost surely for t ≥ 0 and where M(t) is an H(t) local martingale.

6Existence guaranteed by the Doob–Meyer decomposition theorem.

8 CHAPTER 2. BACKGROUND

Chapter 3

Literature Review
3.1 Hawkes process definition

Point processes gained a significant amount of attention in the field of statistics
during the 1950s and 1960s. First Cox (1955) introduced the notion of a doubly
stochastic Poisson process (now called the Cox process) and Bartlett (1963a,b, 1964)
investigated statistical methods for point processes based on their power spectral den-
sities. At IBM Research Laboratories Lewis (1964) formulated a point process model
(for computer failure patterns) which was a step in the direction of the Hawkes pro-
cess. The activity culminated in the significant monograph by Cox and Lewis (1966)
on time series analysis; modern researchers appreciate this text as an important de-
velopment of point process theory since it canvassed their wide range of applications
(Daley and Vere-Jones 2003, p. 16).

It was in this context that Hawkes (1971a) set out to bring Bartlett’s spectral
analysis approach to a new process, a self-exciting point process. The process Hawkes
described was a one-dimensional point process (though defined on t ∈ R as opposed
to Poisson processes defined for t ∈ R+), and is characterised by:

Definition 7. Hawkes process
Consider (N(t) ∶ t ∈ R) a counting process, with associated history (H(t) ∶
t ∈ R), that satisfies

P(N(t + h) −N(t) =m ∣H(t)) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

λ∗(t)h + o(h) , m = 1

o(h) , m > 1

1 − λ∗(t)h + o(h) , m = 0

.

Suppose the process’ conditional intensity function is of the form

λ∗(t) = λ + ∫
t

−∞
µ(t − u) dN(u) (3.1)

for some λ ∈ R+ and µ ∶ R+ → R+ ∪ {0}1 which are called the background
intensity and excitation function respectively. Such a process N(⋅) is a
Hawkes process.

1Assume that µ(⋅) /= 0 as the contrary would entail a homogeneous Poisson process.

9

10 CHAPTER 3. LITERATURE REVIEW

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

t

C
ou

n
t

N(t)

E[N(t)]

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

t

In
te
n
si
ty

λ∗(t)

E[λ∗(t)]

Figure 3.1: A typical Hawkes process realisation N(t) and associated λ∗(t) plotted
against their expected values.

In modern terminology, Definition 7 describes a linear Hawkes process (the non-
linear definition is given later in Definition 8). A realisation of a Hawkes process
is shown in Fig. 3.1 with the associated path of the conditional intensity process.
Hawkes (1971b) soon extended this single point process into a collection of self- and
mutually-exciting point processes, which is discussed after elaborating upon this one-
dimensional process.

3.2 Hawkes conditional intensity function

The form of the Hawkes conditional intensity function in Eq. (3.1) is consistent with
the literature though it somewhat obscures the intuition. Using {t1, t2, . . . , tk} to
denote the observed sequence of past arrival times of the point process up to time t,
the Hawkes conditional intensity is

λ∗(t) = λ +∑
ti<t

µ(t − ti) .

3.2. HAWKES CONDITIONAL INTENSITY FUNCTION 11

The structure of this λ∗(⋅) is quite flexible and requires specification of the excitation
function. A common choice for the excitation function is one of exponential decay;
Hawkes (1971a) originally used this form as it simplified his theoretical derivations
(Hautsch 2011). In this case µ(⋅) is specified by constants α,β ∈ R+ such that

λ∗(t) = λ + ∫
t

−∞
αe−β(t−s) dN(s) (3.2)

= λ +∑
ti<t

αe−β(t−ti) .

The constants have the following intuition: each arrival in the system instantaneously
increases the arrival intensity by α, then over time this arrival’s influence decays at
rate β. As noted earlier λ is the background intensity of the process.

Another frequent choice is a power law function, such as

λ∗(t) = λ + ∫
t

−∞
k

(c + (t − s))p dN(s)

= λ +∑
ti<t

k

(c + (t − ti))p

with some positive scalars c, k, and p. The power law form was popularised by the
geological model called Omori’s law, used to predict the rate of aftershocks caused
by an earthquake (Ogata 1999). More computationally efficient than either of these
excitation functions is a piecewise linear function as in Chatalbashev et al. (2007).
However, the following discussion will focus on the exponential form of the excitation
function.

One practical problem to consider is that it is not possible to observe processes
in nature from time minus infinity. If the Hawkes process is restricted to R+ with
some initial condition λ∗(0) = λ0 then the conditional intensity process satisfies the
stochastic differential equation (SDE)

dλ∗(t) = β(λ − λ∗(t))dt + αdN(t) , t ≥ 0 .

Applying stochastic calculus to yield the general solution of

λ∗(t) = e−βt(λ0 − λ) + λ + ∫
t

0
αeβ(t−s) dN(s) , t ≥ 0 ,

which is a natural extension of Eq. (3.2) (Da Fonseca and Zaatour 2014).

12 CHAPTER 3. LITERATURE REVIEW

3.3 Immigration–birth representation

Stability properties of the Hawkes process are often simpler to divine if it is viewed
as a branching process. Imagine counting the population in a country where people
arrive either via immigration or by birth. Say that the stream of immigrants to the
country form a homogeneous Poisson process at rate λ. Each person then produces
zero or more children in an i.i.d. fashion, and the arrival of births form an inhomo-
geneous Poisson process.

An illustration of this interpretation can be seen in Fig. 3.2. In branching the-
ory terminology, this immigration–birth representation describes a Galton–Watson
process with a modified time dimension. Hawkes and Oakes (1974) used the rep-
resentation to derive asymptotic characteristics of the process, such as Theorem 1.
More modern work uses the representation for applying Bayesian techniques (see
Rasmussen 2013).

Theorem 1. Hawkes process asymptotic normality
If

0 < n ∶= ∫
∞

0
µ(s) ds < 1

and

∫
∞

0
sµ(s) ds <∞

then the number of Hawkes process arrivals in (0, t] as t → ∞ is normally
distributed. Using the notation that N(0, t] = N(t) −N(0) then

P
⎛
⎝
N(0, t] − λt/(1 − n)√

λt/(1 − n)3
≤ y

⎞
⎠
→ Φ(y) .

For a person who enters the system at time ti ∈ R, the rate at which they produce
offspring at future times t > ti is µ(t− ti). Say that the direct offspring of this person
are the first-generation, and their offspring are the second-generation, and so on;
members of the union of all these generations are called the descendants of this ti
arrival.

Using the notation from Grimmett and Stirzaker (2001) Section 5.4, define Zi
to be the random number of offspring in ith generation (with Z0 = 1). As the first-
generation offspring arrived from a Poisson process Z1 ∼ Poi(n) where the mean n is

3.3. IMMIGRATION–BIRTH REPRESENTATION 13

t

Figure 3.2: Hawkes process represented as a collection of family trees (immigration–
birth representation). Squares indicate immigrants, circles are offspring/descendants,
and the crosses denote the generated point process.

known as the branching ratio. This branching ratio (which can take values in (0,∞])
is defined in Theorem 1 and in the case of an exponentially decaying intensity is

n = ∫
∞

0
αe−βs ds = α

β
. (3.3)

Knowledge of the branching ratio can inform development of simulation algo-
rithms. For each immigrant i, the times of the first-generation offspring arrivals —
conditioned on knowing the total number of them Z1 — are each i.i.d. with density
µ(t − ti)/n. Section 6 explores Hawkes process simulation methods inspired by the
immigration–birth representation in more detail.

The value of n also determines whether or not the Hawkes process explodes2.
To see this, let g(t) = E[λ∗(t)]. A renewal–type equation will be constructed for g
and then its limiting value will be determined. Conditioning on the time of the first
jump,

g(t) = E [λ∗(t)]

= E [λ + ∫
t

0
µ(t − s)dN(s)]

= λ + ∫
t

0
µ(t − s)E[dN(s)] .

2Using the standard definition as the event that N(t) −N(s) =∞ for t − s <∞.

14 CHAPTER 3. LITERATURE REVIEW

In order to calculate this expected value, start with

λ∗(s) = lim
h↓0

E[N(s + h) −N(s) ∣H(s)]
h

= E[dN(s) ∣H(s)]
ds

and take expectations (and apply the tower property)

g(s) = E[λ∗(s)] = E[E[dN(s) ∣H(s)]]
ds

= E[dN(s)]
ds

to see that

E[dN(s)] = g(s)ds .

Therefore

g(t) = λ + ∫
t

0
µ(t − s) g(s)ds

= λ + ∫
t

0
g(t − s)µ(s)ds .

This renewal–type equation (in convolution notation is g = λ+g⋆µ) then has different
solutions according to the value of n. Asmussen (2003) splits the cases into: the
defective case (n < 1), the proper case (n = 1), and the excessive case (n > 1).
Proposition 7.4 states that for the defective case

g(t) = E[λ∗(t)]→ λ

1 − n . (3.4)

However in the excessive case then λ∗(t)→∞ exponentially quickly, and hence N(⋅)
eventually explodes a.s.

Explosion for n > 1 is supported by viewing the arrivals as a branching process.
Since E[Zi] = ni (see Section 5.4 Lemma 2 of Grimmett and Stirzaker 2001) the
expected number of descendants for one person is

E [
∞
∑
i=1
Zi] =

∞
∑
i=1

E[Zi] =
∞
∑
i=1
ni =

⎧⎪⎪⎨⎪⎪⎩

n
1−n , n < 1

∞, n ≥ 1
.

Therefore n ≥ 1 means that one immigrant would generate infinitely many descen-
dants on average.

3.4. COVARIANCE AND POWER SPECTRAL DENSITIES 15

When n ∈ (0,1) the branching ratio is a probability and is intuitively understood
as the ratio of the number of total offspring to the size of the entire family (i.e., the
total offspring plus the original immigrant); that is

E [∑∞
i=1Zi]

1 +E [∑∞
i=1Zi]

=
n

1−n
1 + n

1−n
=

n
1−n
1

1−n
= n .

Therefore, any Hawkes process arrival selected at random was generated endoge-
nously (i.e., a child) with probability (w.p.) n or exogenously (i.e., an immigrant)
w.p. 1− n. Most properties of the Hawkes process rely on the process being station-
ary which is another way to insist that n ∈ (0,1) (a rigorous definition is given in
Section 3.4), so this is assumed hereinafter.

3.4� Covariance and power spectral densities

Hawkes processes originated from the spectral analysis of general stationary point
processes. Finding the power spectral density of the Hawkes process gives access to
many techniques from the field; for example, model fitting can be achieved by using
the observed periodogram of a realisation. The power spectral density is defined in
terms of the covariance density. Once again the exposition is simplified by using the
shorthand that

dN(t) = lim
h↓0

N(t + h) −N(t) .

Unfortunately the term “stationary” has many different meanings in probability
theory. In this context the Hawkes process is stationary when the jump process
(dN(t) ∶ t ∈ R) — which takes values in {0,1} — is weakly stationary. This means
that E[dN(t)] and Cov(dN(t),dN(t + s)) do not depend on t. Stationarity in this
sense does not imply stationarity of N(⋅) or stationarity of the inter-arrival times
(Lewis 1970). One consequence of stationarity is that λ∗(⋅) will have a long term
mean (as given by Eq. (3.4))

λ∗ ∶= E[λ∗(t)] = E[dN(t)]
dt

= λ

1 − n . (3.5)

The (auto)covariance density is defined, for τ > 0, to be

R(τ) = Cov(dN(t)
dt

,
dN(t + τ)

dτ
) .

16 CHAPTER 3. LITERATURE REVIEW

Due to the symmetry of covariance it holds that R(−τ) = R(τ), however R(⋅) cannot
be extended to all of R due to an atom at the origin. For simple point processes
E[(dN(t))2] = E[dN(t)] (as dN(t) ∈ {0,1}) therefore for τ = 0

E[(dN(t))2] = E[dN(t)] = λ∗ dt .

Therefore the complete covariance density (complete in that its domain is all of R)
is defined as

R(c)(τ) = λ∗δ(τ) +R(τ) (3.6)

where δ(⋅) is the Dirac delta function3. The power spectral density function

S(ω) ∶= 1

2π ∫
∞

−∞
e−iτωR(c)(τ)dτ = 1

2π
[λ∗ + ∫

∞

−∞
e−iτωR(τ)dτ] . (3.7)

Up until this point the discussion (excluding the final value of Eq. (3.5)) has consid-
ered general stationary point processes. To apply the theory specifically to Hawkes
processes then consider:

Theorem 2. Hawkes process power spectral density
Consider a Hawkes process with an exponentially decaying intensity with
α < β. The intensity process then has covariance density, for τ > 0,

R(τ) = αβλ(2β − α)
2(β − α)2 e−(β−α)τ .

Hence, its power spectral density is, ∀ω ∈ R,

S(ω) = λβ

2π(β − α) (1 + α(2β − α)
(β − α)2 + ω2

) .

Proof (adapted from Hawkes 1971a): Consider the covariance density for τ ∈ R∖{0}:

R(τ) = E [dN(t)
dt

dN(t + τ)
dτ

] − λ∗2 . (3.8)

3Typically R(0) is defined such that Rc(⋅) is everywhere continuous. Lewis (1970, p. 357) states
that strictly speaking Rc(⋅) “does not have a ‘value’ at τ = 0”. See Bartlett (1963b), Cox and Lewis
(1966), and Hawkes (1971a) for further details.

3.4. COVARIANCE AND POWER SPECTRAL DENSITIES 17

Firstly note that, via the tower property,

E [dN(t)
dt

dN(t + τ)
dτ

] = E
⎡⎢⎢⎢⎣
E [dN(t)

dt

dN(t + τ)
dτ

∣H(t + τ)]
⎤⎥⎥⎥⎦

= E
⎡⎢⎢⎢⎣

dN(t)
dt

E [dN(t + τ)
dτ

∣H(t + τ)]
⎤⎥⎥⎥⎦

= E [dN(t)
dt

λ∗(t + τ)] .

Hence Eq. (3.8) can be combined with Eq. (3.1) to achieve

R(τ) = E
⎡⎢⎢⎢⎣

dN(t)
dt

(λ + ∫
t+τ

−∞
µ(t + τ − s)dN(s))

⎤⎥⎥⎥⎦
− λ∗2 ,

which yields4

R(τ) = λ∗µ(τ) + ∫
τ

−∞
µ(τ − v)R(τ)dv

= λ∗µ(τ) + ∫
∞

0
µ(τ + v)R(v)dv + ∫

τ

0
µ(τ − v)R(v)dv . (3.9)

Taking the Laplace transform of Eq. (3.9) gives5

L {R(τ)} (s) = αλ∗(2β − α)
2(β − α)(s + β − α) . (3.10)

Note that Eq. (3.3) and Eq. (3.5) supply

λ∗ = βλ

β − α ⇒L {R(τ)} (s) = αβλ(2β − α)
2(β − α)2(s + β − α) , (3.11)

∴ R(τ) = L −1 { αβλ(2β − α)
2(β − α)2(s + β − α)} = αβλ(2β − α)

2(β − α)2 e−(β−α)τ .

The value of λ∗ from Eq. (3.11) and Eq. (3.10) can be substituted into the definition

4Refer to Appendix A.1 for details. This is a Wiener–Hopf-type integral equation.
5Refer to Appendix A.2 for details.

18 CHAPTER 3. LITERATURE REVIEW

given in Eq. (3.7):

S(ω) = 1

2π
[λ∗ + ∫

∞

−∞
e−iτωR(τ)dτ]

= 1

2π
[λ∗ + ∫

∞

0
e−iτωR(τ)dτ + ∫

∞

0
eiτωR(τ)dτ]

= 1

2π
[λ∗ +L {R(τ)} (iω) +L {R(τ)} (−iω)]

= 1

2π

⎡⎢⎢⎢⎢⎣
λ∗ + αλ∗(2β − α)

2(β − α)(iω + β − α) +
αλ∗(2β − α)

2(β − α)(−iω + β − α)

⎤⎥⎥⎥⎥⎦

= λβ

2π(β − α) [1 + α(2β − α)
(β − α)2 + ω2

] .

As R(⋅) is a real-valued symmetric function, its Fourier transform S(⋅) is also
real-valued and symmetric, i.e.,

S(ω) = 1

2π
[λ∗ + ∫

∞

−∞
e−iτωR(τ)dτ] = 1

2π
[λ∗ + ∫

∞

−∞
cos(τω)R(τ)dτ] , and

S+(ω) ∶= S(−ω) + S(ω) = 2S(ω) .
It is common that S+(⋅) is plotted instead of S(⋅); this is equivalent to wrapping the
negative frequencies over to the positive half-line (Cox and Lewis 1966, Section 4.5).
Fig. 3.3 shows an example spectral density.

0 1 2 3 4 5 6

10
1

10
2

ω

S
+
(ω

)

Figure 3.3: Theoretical power density spectrum for a Hawkes process specified by
(λ,α, β) = (0.5,4,5); c.f. Fig. 1 of Ozaki (1979).

3.5. GENERALISATIONS OF HAWKES PROCESSES 19

3.5 Generalisations of Hawkes processes

The immigration–birth representation is useful both theoretically and practically.
However it can only be used to describe linear Hawkes processes. Brémaud and
Massoulié (1996) generalised the Hawkes process to its nonlinear form:

Definition 8. Nonlinear Hawkes process
Consider a counting process with conditional intensity function of the form

λ∗(t) = Ψ(∫
t

−∞
µ(t − s)N(ds))

where Ψ ∶ R → R+, µ ∶ R+ → R. Then N(⋅) is a nonlinear Hawkes process.
Note that selecting Ψ(x) = λ+ x reduces N(⋅) to the linear Hawkes process
of Definition 7.

Modern work on nonlinear Hawkes processes is much rarer than the original lin-
ear case (for simulation see pp. 96–116 of Carstensen 2010, and associated theory in
Zhu 2013). This is due to a combination of factors; firstly, the generalisation was
introduced relatively recently, and secondly, the increased complexity frustrates even
simple investigations.

Now to return to the extension mentioned earlier, that of a collection of self- and
mutually-exciting Hawkes processes. The processes being examined are collections of
one-dimensional Hawkes processes which ‘excite’ themselves and each other. There
are models for Hawkes processes where the points themselves are multi-dimensional,
e.g., spatial Hawkes processes or temporo-spatial Hawkes processes (Mohler et al.
2011), which are not examined in this thesis.

Definition 9. Mutually exciting Hawkes process
Consider a collection of m counting processes {N1(⋅), . . . ,Nm(⋅)} denoted
N . Say {Ti,j ∶ i ∈ {1, . . . ,m}, j ∈ N} are the random arrival times for each
counting process (and ti,j for observed arrivals). If for each i = 1, . . . ,m then
Ni(⋅) has conditional intensity of the form

λ∗i (t) = λi +
m

∑
j=1
∫

t

−∞
µj(t − u) dNj(u) (3.12)

for some λi ∈ R+ and µi ∶ R+ → R+ ∪ {0} (µi(⋅) /= 0), then N is called a
mutually exciting Hawkes process. When the excitation functions are set to

20 CHAPTER 3. LITERATURE REVIEW

be exponentially decaying, Eq. (3.12) can be written as

λ∗i (t) = λi +
m

∑
j=1
∫

t

−∞
αi,je

−βi,j(t−s) dNj(s) (3.13)

= λi +
m

∑
j=1
∑
tj,k<t

αi,je
−βi,j(t−tj,k)

for non-negative constants {αi,j, βi,j ∶ i, j = 1, . . . ,m}.

3.6� Financial applications

This section primarily reviews the work of Aı̈t-Sahalia et al. (2010) and Filimonov
and Sornette (2012). It assumes the reader has been introduced to mathematical
finance using SDEs; following chapters do not make this assumption and can be
skipped to without loss of intelligibility.

3.6.1� Financial contagion

With these definitions the discussion can turn to the latest applications of Hawkes
processes. A major domain for self- and mutually-exciting processes is financial anal-
ysis. Frequently it is seen that large movements in a major stock market propagate
in foreign markets as a process called financial contagion. Examples of this phe-
nomenon are clearly visible in historical series of asset prices; Fig. 3.4 shows one such
case.

The ‘Hawkes diffusion model’ introduced by Aı̈t-Sahalia et al. (2010) is an at-
tempt to extend previous models of stock prices to include financial contagion. Mod-
ern models for stock prices are typically built upon the model popularised by Black
and Scholes (1973) where the log returns on the stock follow geometric Brownian
motion. Whilst this seminal paper was lauded by the economics community, the
model inadequately captured the ‘fat tails’ of the return distribution and so was not
commonly used by traders (Haug and Taleb 2014). Merton (1976) attempted to
incorporate heavy tails by including a Poisson jump process to model booms and
crashes in the stock returns; this model is often called Merton diffusion model. The
Hawkes diffusion model extends this model by replacing the Poisson jump process
with a mutually-exciting Hawkes process, so that crashes can self-excite and propa-
gate in a market and between global markets.

3.6. FINANCIAL APPLICATIONS 21

The basic Hawkes diffusion model describes the log returns ofm assets {X1(⋅), . . . ,Xm(⋅)}
where each asset i = 1, . . . ,m has associated expected return µi ∈ R, constant volatil-
ity σi ∈ R+, and standard Brownian motion (WX

i (t) ∶ t ≥ 0). The Brownian motions
have constant correlation coefficients {ρi,j ∶ i, j = 1, . . . ,m}. Jumps are added by a
self- and mutually-exciting Hawkes process (as per Definition 9 with some selection of
constants α⋅,⋅ and β⋅,⋅) with stochastic jump sizes (Zi(t) ∶ t ≥ 0). The asset dynamics
are then assumed to satisfy the SDE

dXi(t) = µi dt + σi dWX
i (t) +Zi(t)dNi(t) .

The general Hawkes diffusion model replaces the constant volatilities with stochas-
tic volatilities {V1(⋅), . . . , Vm(⋅)} specified by the Heston model. Each asset i =
1, . . . ,m has a: long-term mean volatility θi ∈ R+, rate of returning to this mean
κi ∈ R+, volatility of the volatility νi ∈ R+, and standard Brownian motion (W V

i (t) ∶
t ≥ 0)6. Then the full dynamics are captured by

dXi(t) = µi dt +
√
Vi(t)dWX

i (t) +Zi(t)dNi(t) ,

dVi(t) = κi(θi − Vi(t))dt + νi
√
Vi(t)dW V

i (t) .
However the added realism of the Hawkes diffusion model comes at a high price.

The constant volatility model requires 5m+3m2 parameters to be fit (assuming Zi(⋅)
is characterised by two parameters) and the stochastic volatility extension requires
an extra 3m parameters (assuming ∀i, j = 1, . . . ,m that E[Wi(⋅)VWj(⋅)V] = 0). In
Aı̈t-Sahalia et al. (2010) hypothesis tests reject the Merton diffusion model in favour
of the Hawkes diffusion model, however there are no tests for overfitting the data
(e.g., Akaike or Bayesian information criterion comparisons). Remember that John
Von Neumann (reputedly) claimed that “with four parameters I can fit an elephant”
(Dyson 2004).

Simply for computational necessity the authors made a number of simplifying
assumptions to reduce the number of parameters to fit (e.g., that the background
intensity of crashes is the same for all markets). Even so, the Hawkes diffusion model
was only able to be fitted for pairs of markets (m = 2) instead of for the globe as a
whole. Since the model was calibrated to daily returns of market indices, historical
data was easily available (e.g., from Google or Yahoo! finance); care had to be taken
to convert timezones and handle the different market opening and closing times. The

6Correlation between the WX
⋅
(⋅)’s is optional, yet the effect would be dominated by the jump

component.

22 CHAPTER 3. LITERATURE REVIEW

parameter estimation method used by Aı̈t-Sahalia et al. (2010) was the generalised
method of moments, however the theoretical moments derived satisfy long and con-
voluted equations.

3.6.2� Mid-price changes and high-frequency trading

A simpler system to model is a single stock’s price over time, though there are many
different prices to consider. For each stock one could use: the last transaction price,
the best ask price, the best bid price, or the mid-price (defined as the average of best
ask and best bid prices). The last transaction price includes inherent microstructure
noise (e.g. the bid–ask bounce), and the best ask and bid prices fail to represent the
actions of both buyers and sellers in the market.

Filimonov and Sornette (2012) model the mid-price changes over time as a Hawkes
process. In particular they look at long-term trends of the (estimated) branching ra-
tio. In this context, n shows the proportion of price moves that are not due to
external market information but simply reactions to other market participants. This
ratio can be seen as the quantification of the principle of economic reflexivity. The
authors conclude that the branching ratio has increased dramatically from 30% in
1998 to 70% in 2007.

Later that year Lorenzen (2012) critiqued the test procedure used in this anal-
ysis. Filimonov and Sornette (2012) had worked with a dataset with timestamps
accurate to a second, and this often led to multiple arrivals nominally at the same
time (which is an impossible event for simple point processes). Fake precision was
achieved by adding Unif(0,1) random fractions of seconds to all timestamps, a tech-
nique also used by Bowsher 2007. Lorenzen found that this method added an ele-
ment of smoothing to the data which gave it a better fit to the model than the actual
millisecond precision data. The randomisation also introduced bias to the Hawkes
process parameter estimates, particularly of α and β. Lorenzen formed a crude mea-
sure of high-frequency trading activity leading to an interesting correlation between
this activity and n over the observed period.

3.6. FINANCIAL APPLICATIONS 23

Figure 3.4: Example of mutual excitation in global markets. This figure plots the
cascade of declines in international equity markets experienced between October 3,
2008 and October 10, 2008 in the US; Latin America (LA); UK; Developed Euro-
pean countries (EU); and Developed countries in the Pacific. Data are hourly. The
first observation of each price index series is normalised to 100 and the following
observations are normalised by the same factor. Source: MSCI MXRT international
equity indices on Bloomberg (direct copy from Aı̈t-Sahalia et al. 2010).

24 CHAPTER 3. LITERATURE REVIEW

Chapter 4

Parameter Estimation

This chapter investigates the problem of generating parameters estimates θ̂ = (λ̂, α̂, β̂)
given some finite set of arrival times t = {t1, t2, . . . , tk} presumed to be from a Hawkes
process1. The estimators are tested over simulated data, for the sake of simplicity
and lack of relevant data. Unfortunately this method bypasses the many significant
challenges raised by real datasets, challenges that caused Filimonov and Sornette
(2013) to state that:

“Our overall conclusion is that calibrating the Hawkes process is akin to
an excursion within a minefield that requires expert and careful testing
before any conclusive step can be taken.”

The method considered is maximum likelihood estimation, which begins by finding
the likelihood function, and estimates the model parameters as the inputs which
maximise this function.

4.1 Likelihood function derivation

Daley and Vere-Jones (2003, Proposition 7.2.III) give the following result:

Theorem 3. Hawkes process likelihood
Let N(⋅) be a regular point process on [0, T] for some finite positive T , and
let t1, . . . , tk denote a realisation of N(⋅) over [0, T]. Then, the likelihood
L of N(⋅) is expressible in the form

L =
⎡⎢⎢⎢⎢⎣

k

∏
i=1
λ∗(ti)

⎤⎥⎥⎥⎥⎦
exp(−∫

T

0
λ∗(u)du) .

1Note: The notation will omit the θ̂ and t arguments from functions, i.e. L = L(θ̂; t), l = l(θ̂; t),
λ∗(t) = λ∗(t; t, θ̂), and Λ(t) = Λ(t; t, θ̂).

25

26 CHAPTER 4. PARAMETER ESTIMATION

Proof: The joint density function from Eq. (2.1) is:

L = f(t1, t2, . . . , tk) =
k

∏
i=1
f∗(ti) .

This function can be written in terms of the conditional intensity function. Rearrange
Eq. (2.2) to find of f∗(t) in terms of λ∗(t) (as per Rasmussen 2009):

λ∗(t) = f∗(t)
1 − F ∗(t)

=
d
dtF

∗(t)
1 − F ∗(t)

= −d log(1 − F ∗(t))
dt

.

Integrate both sides over the interval (tk, t):

−∫
t

tk
λ∗(u)du = log(1 − F ∗(t)) − log(1 − F ∗(tk)) .

The Hawkes process is a simple point process, meaning that multiple arrivals cannot
occur at the same time. Hence F ∗(tk) = 0 as Tk+1 > tk so

− ∫
t

tk
λ∗(u)du = log(1 − F ∗(t)) . (4.1)

Further rearranging yields

F ∗(t) = 1 − exp(−∫
t

tk
λ∗(u)du)

f∗(t) = λ∗(t) exp(−∫
t

tk
λ∗(u)du) .

Thus the likelihood becomes

L =
k

∏
i=1
f∗(ti)

=
k

∏
i=1
λ∗(ti) exp(−∫

ti

ti−1
λ∗(u)du)

=
⎡⎢⎢⎢⎢⎣

k

∏
i=1
λ∗(ti)

⎤⎥⎥⎥⎥⎦
exp(−∫

tk

0
λ∗(u)du) . (4.2)

4.2. SIMPLIFICATIONS FOR EXPONENTIAL DECAY 27

This likelihood is defined for observing a process until the time of the kth arrival.
When the process is observed over some time period [0, T] ⊃ [0, tk], the likelihood
should include the probability of seeing no arrivals in the time interval (tk, T]:

L =
⎡⎢⎢⎢⎢⎣

k

∏
i=1
f∗(ti)

⎤⎥⎥⎥⎥⎦
(1 − F ∗(T)) .

Using the same formulation of F ∗(t) then

∴L =
⎡⎢⎢⎢⎢⎣

k

∏
i=1
λ∗(ti)

⎤⎥⎥⎥⎥⎦
exp(−∫

T

0
λ∗(u)du) .

4.2 Simplifications for exponential decay

With the likelihood function from Eq. (4.2), the log-likelihood for the interval [0, tk]
can be derived as

l =
k

∑
i=1

log(λ∗(ti)) − ∫
tk

0
λ∗(u)du =

k

∑
i=1

log(λ∗(ti)) −Λ(tk) . (4.3)

Note that the integral over [0, tk] can be broken up into the segments [0, t1], [t1, t2],
. . . , [tk−1, tk], and therefore

Λ(tk) = ∫
tk

0
λ∗(u)du = ∫

t1

0
λ∗(u)du +

k−1
∑
i=1
∫

ti+1

ti
λ∗(u)du .

This can be simplified in the case where λ∗(⋅) decays exponentially:

Λ(tk) = ∫
t1

0
λdu +

k−1
∑
i=1

⎡⎢⎢⎢⎢⎣
∫

ti+1

ti
λ + ∑

tj<u
αe−β(u−tj) du

⎤⎥⎥⎥⎥⎦

= λtk + α
k−1
∑
i=1
∫

ti+1

ti

i

∑
j=1

e−β(u−tj) du

= λtk + α
k−1
∑
i=1

i

∑
j=1
∫

ti+1

ti
e−β(u−tj) du

= λtk −
α

β

k−1
∑
i=1

i

∑
j=1

[e−β(ti+1−tj) − e−β(ti−tj)] .

28 CHAPTER 4. PARAMETER ESTIMATION

Finally, many of the terms of this double summation cancel out leaving2

Λ(tk) = λtk −
α

β

k−1
∑
i=1

[e−β(tk−ti) − e−β(ti−ti)]

= λtk −
α

β

k

∑
i=1

[e−β(tk−ti) − 1] . (4.4)

Substituting λ∗(⋅) and Λ(⋅) into Eq. (4.3) gives

l =
k

∑
i=1

log

⎡⎢⎢⎢⎢⎣
λ + α

i−1
∑
j=1

e−β(ti−tj)
⎤⎥⎥⎥⎥⎦
− λtk +

α

β

k

∑
i=1

[e−β(tk−ti) − 1] . (4.5)

This direct approach is computationally infeasible as the first term’s double sum-
mation implies O(k2) complexity. Fortunately the similar structure of the inner
summations allows l to be computed with O(k) complexity (Ogata 1978, Crowley
2013). Denote the inner summation, for some value of i ∈ {2, . . . , k}, as

A(i) =
i−1
∑
j=1

e−β(ti−tj) . (4.6)

This can be defined recursively in terms of A(i − 1) as follows:

A(i) =
i−1
∑
j=1

e−βti+βtj

= e−βti+βti−1eβti−βti−1
i−1
∑
j=1

e−βti+βtj

= e−βti+βti−1
i−1
∑
j=1

e−βti−1+βtj

= e−β(ti−ti−1)
⎛
⎝

1 +
i−2
∑
j=1

e−β(ti−1−tj)
⎞
⎠

= e−β(ti−ti−1)(1 +A(i − 1)) .

With the added base case of A(1) = 0, l can be rewritten as

l =
k

∑
i=1

log(λ + αA(i)) − λtk +
α

β

k

∑
i=1

[e−β(tk−ti) − 1] . (4.7)

2Here the final summand is unnecessary, though it is often included, see Lorenzen (2012).

4.3. DISCUSSION 29

Ozaki (1979) also gives the partial derivatives and the Hessian for this log-
likelihood function. Of particular note is that each derivative calculation can be
achieved in order O(k) complexity when a recursive approach (similar to Eq. (4.6))
is taken (Ogata 1981). The recursion implies that the joint process (N(t), λ∗(t)) is
Markovian (see Remark 1.22 of Liniger 2009).

4.3 Discussion

The understanding of the maximum likelihood estimation method for the Hawkes
process has changed significantly over time. The general form of the log-likelihood
function, Eq. (4.3), was known by Rubin (1972). It was applied to the Hawkes pro-
cess by Ozaki (1979) who derived Eq. (4.5) and the improved recursive form Eq. (4.7).
Ozaki also found (as noted earlier) an efficient method for calculating the derivatives
and the Hessian matrix. Consistency, asymptotic normality and efficiency of the
estimator were proved by Ogata (1978).

Therefore the maximum likelihood estimator should be a very effective technol-
ogy for model fitting. However, Filimonov and Sornette (2012) find that for finite
sample sizes the estimator produces significant bias, encounters many local optima,
and is highly sensitive to the selection of excitation function.

Also, the O(k) complexity swiftly becomes unusable when sample sizes become
large; remember any iterative optimisation routine would calculate the likelihood
function perhaps thousands of times. The R ‘hawkes’ package thus implements this
routine in C++ in an attempt to mitigate the performance issues (Appendix B.1
shows an optimised revision of this routine).

This performance bottleneck is the cause of the latest trend of using the gener-
alised method of moments to perform parameter estimation. Da Fonseca and Zaatour
(2014) state that the procedure is “instantaneous” on their test sets. The method
uses sample moments and the sample autocorrelation function which are smoothed
via (rather arbitrary) user-selected procedure.

30 CHAPTER 4. PARAMETER ESTIMATION

Chapter 5

Goodness of Fit

5.1 Transformation to a Poisson process

Assessing the goodness of fit for some point data to a Hawkes model is an important
practical consideration. In performing this assessment the point process’ compen-
sator is essential, as is the random time change theorem (here adapted from Brown
et al. 2002):

Theorem 4. Random time change theorem
Say {t1, t2, . . . , tk} is a realisation over time [0, T] from a point process
with conditional intensity function λ∗(⋅). If λ∗(⋅) is positive over [0, T] and
Λ(T) <∞ a.s. then the transformed points {Λ(t1),Λ(t2), . . . ,Λ(tk)} form a
Poisson process with unit rate.

The random time change theorem is fundamental to the model fitting procedure
called (point process) residual analysis. Daley and Vere-Jones (2003) Proposition
7.4.IV rewords and extends the theorem as such1:

Theorem 5. Residual analysis
Consider an unbounded, increasing sequence of time points {t1, t2, . . .}
in the half-line (0,∞), and a monotonic, continuous compensator Λ(⋅)
such that limt→∞ Λ(t) = ∞ a.s. The transformed sequence {t∗1, t∗2, . . .} =
{Λ(t1),Λ(t2), . . .} is a realisation of a unit rate Poisson process if and only
if the original sequence {t1, t2, . . .} is a realisation from the point process
defined by Λ(⋅).

Hence, equipped with a closed form of the compensator from Eq. (4.4), the quality
of the statistical inference can be ascertained using standard fitness tests for Poisson
processes. Fig. 5.1 shows a realisation of a Hawkes process and the corresponding
transformed process

1Original work on residual analysis goes back to Meyer (1971), Papangelou (1972) and Watanabe
(1964) (Embrechts et al. 2011).

31

32 CHAPTER 5. GOODNESS OF FIT

0 20 40 60 80 100 120
0

200

400

600

800

1,000

N(t)

E[N(t)]

(a) Hawkes process realisation

0 20 40 60 80 100 120
0

10

20

30
λ∗(t)

E[λ∗(t)]

(b) Conditional intensity

0 20 40 60 80 100 120
0

200

400

600

800

1,000
Λ(t)

(c) Compensator

0 200 400 600 800 1,000
0

200

400

600

800

1,000

N∗(t)

E[N∗(t)]

(d) Transformed process

Figure 5.1: An example of using the random time change theorem to transform a
Hawkes process into a unit rate Poisson process.

5.2 Tests for Poisson process

5.2.1 Basic tests

There are many procedures for testing whether a series of points form a Poisson
process (see Cox and Lewis 1966 for an extensive treatment). As a first test, one
can run a hypothesis test to check ∑i 1(t∗i < t) ∼ Poi(t). After this succeeds then the
interarrival times,

{τ1, τ2, τ3, . . .} = {t∗1, t∗2 − t∗1, t∗3 − t∗2, . . .},

should be tested to ensure τi
i.i.d.∼ Exp(1). A qualitative approach is to create a

Q–Q plot for τi using the exponential distribution (see e.g. Fig. 5.2a). Otherwise
a quantitative alternative is to run Kolmogorov–Smirnov (or perhaps Anderson–
Darling) tests.

5.2. TESTS FOR POISSON PROCESS 33

5.2.2 Test for independence

The next test, after confirming there is reason to believe that the τi are exponentially
distributed, is to check their independence. This can be done by looking for auto-
correlation in the τi sequence2. A visual examination can be performed by plotting
the points (Ui+1, Ui). If there are noticeable patterns then the τi are autocorrelated;
otherwise the points should look evenly scattered, see e.g. Fig. 5.2b. Quantitative
extensions exist; for example see Section 3.3.3 of Knuth (2014), or serial correlation
tests in Kroese et al. (2011).

0 1 2 3 4
0

1

2

3

4

Expected

O
b
se
rv
ed

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Uk = FExp(1)(t
∗
k − t∗k−1)

U
k
+
1
=

F
E
x
p
(1

)
(t

∗ k
+
1
−
t∗ k
)

(b)

Figure 5.2: (a) Q–Q testing for i.i.d. Exp(1) interarrival times. (b) A qualitative
autocorrelation test.

5.2.3 Lewis test

A statistical test with more power is the Lewis test as described by Kim and Whitt
(2013). Firstly, it relies on the fact that if {t∗1, t∗2, . . . , t∗N} are arrival times for a unit
rate Poisson process then {t∗1/t∗N , t∗2/t∗N , . . . , t∗N−1/t∗N} are distributed as the order
statistics of a uniform [0,1] distribution. This observation is called conditional uni-
formity, and forms the basis for a test itself. Lewis’ test relies on applying Durbin’s
modification3. See the end of Appendix C.1.1 for an implementation of the test.

2 Obviously zero autocorrelation does not imply independence, but a non-zero amount would
certainly imply a non-Poisson model.

3The modification was introduced in Durbin (1961) with a widely applicable treatment by Lewis
(1965).

34 CHAPTER 5. GOODNESS OF FIT

5.2.4� Brownian motion approximation test

An approximate Kolmogorov–Smirnov-type test, Algorithm 7.4.V from Daley and
Vere-Jones (2003), is as follows:

1. Given {t∗1, . . . , t∗N(T)}, plot the cumulative step-function Y (x) through the points

(xi, yi) = (t∗i /T, i/N(T)) in the unit square.

2. Also plot confidence lines y = x ±Z1−α/2/
√
T where Φ(Z1−α/2) = 1 − α/2.

3. Finally, accept the hypothesis that {t∗i } come from a unit rate Poisson process
if Y (x) stays within the confidence lines (with 100(1 − α)% certainty).

An example realisation of this test is shown in Fig. 5.3.

The authors stressed that the test is approximate in two senses. Firstly, it uses
the Brownian motion approximation to the Poisson process, and therefore it is a large
sample test. Secondly, Kolmogorov–Smirnov-type tests introduce bias when the data
being tested is also the data used to estimate parameters. Schoenberg (2002) shows
the interesting way in which this bias exhibits itself for small sample sizes.

However the test does not make sense statistically, nor does it perform well.
Fig. 5.4a shows how the test performs drastically inaccurately even when using input
that is from a unit rate Poisson process with a large number of observations. Possi-
bly the

√
T term is a typographic error. An alternative test based on the Brownian

motion approximation is suggested.

Say that N(t) is a Poisson process of rate T . Define M(t) = (N(t) − tT)/
√
T for

t ∈ [0,1]. Donsker’s invariance principle implies that as T →∞ then (M(t) ∶ t ∈ [0,1])
converges in distribution to standard Brownian motion (B(t) ∶ t ∈ [0,1]). Fig. 5.5
shows example realisations of M(t) for various T that, at least qualitatively, are
decent approximations to standard Brownian motion.

An alternative test it to utilise the first arcsine law for Brownian motion. That
states that the random time M∗ ∈ [0,1], given by

M∗ = arg max
s∈[0,1]

B(s) ,

is arcsine distributed (i.e. M∗ ∼ Beta(1/2,1/2)).

Therefore the test takes a sequence of arrivals observed over [0, T] and:

5.2. TESTS FOR POISSON PROCESS 35

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Normalised time

N
o
r
m
a
li
s
e
d
n
u
m
b
e
r
o
f
a
r
r
iv
a
ls

Figure 5.3: An example realisation of Algorithm 7.4.V of Daley and Vere-Jones
(2003). The blue step function gives Y (x), whereas the red dashed lines are bound-
aries of 95% confidence. The data source is 103 Hawkes process arrivals with
(λ,α, β) = (0.5,2,2.1).

1. transforms the arrivals to {t∗1/T, t∗2/T, . . . , t∗k/T} which should be a Poisson pro-
cess of rate T over [0,1],

2. constructs the Brownian motion approximation M(t) as above, finds the max-
imiser M∗, and

3. accepts the ‘unit-rate Poisson process’ hypothesis if M∗ lies within the (α/2,1−
α/2) quantiles of the Beta(1/2,1/2) distribution, otherwise reject it.

Fig. 5.4b shows that this algorithm performs as expected. As a final note, many other
tests can be done based off properties of Brownian motion. For example, the test
could simply note that M(1) ∼ N(0,1) and therefore accept if M(1) ∈ [Zα/2, Z1−α/2]
and reject otherwise.

36 CHAPTER 5. GOODNESS OF FIT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1 − α

O
b
se
rv
e
d
a
c
c
e
p
ta
n
c
e
fr
a
c
ti
o
n

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1 − α

O
b
se
rv
e
d
a
c
c
e
p
ta
n
c
e
fr
a
c
ti
o
n

(b)

Figure 5.4: (a) Testing Algorithm 7.4.V of Daley and Vere-Jones (2003) and (b)
testing proposed alternative algorithm. The algorithms were run over 103 simulated
unit rate Poisson processes over time horizon [0,103]. The blue crosses show the
observed acceptance rate of each algorithm for various significance levels. The red
dashed line shows the theoretical number of tests that should have been accepted at
each threshold.

5.2. TESTS FOR POISSON PROCESS 37

0 0.5 1
−0.5

0

0.5

1

1.5

t

M
(t
)

(a) T = 10

0 0.5 1
−0.5

0

0.5

1

1.5

2

t

M
(t
)

(b) T = 100

0 0.5 1
−1.5

−1

−0.5

0

0.5

t

M
(t
)

(c) T = 10,0000

0 0.5 1
−1.5

−1

−0.5

0

0.5

t

B
(t
)

(d) Actual Brownian motion

Figure 5.5: Realisations of Poisson process approximations to Brownian motion.
Each approximation uses T , except (d) which is a direct simulation of Brownian
motion for comparison.

38 CHAPTER 5. GOODNESS OF FIT

Chapter 6

Simulation Methods

6.1 Transformation methods

For general point processes a simulation algorithm arises from the converse of the
random time change theorem (given in Section 5.1). In essence, a unit rate Poisson
process {t∗1, t∗2, . . .} is transformed by the inverse compensator Λ(⋅)−1 into any gen-
eral point process defined by that compensator. The method, sometimes called the
inverse compensator method, iteratively solves the equations

t∗1 = ∫
t1

0
λ∗(s)ds, t∗k+1 − t∗k = ∫

tk+1

tk
λ∗(s)ds

for {t1, t2, . . .}, the desired point process (see Giesecke and Tomecek 2005 and Algo-
rithm 7.4.III of Daley and Vere-Jones 2003).

For Hawkes processes the algorithm was first suggested by Ozaki (1979) and did
not explicitly state any relation to time changes. It instead focused on Eq. (4.1),

∫
t

tk
λ∗(u)du = − log(1 − F ∗(t)) ,

which relates the conditional c.d.f. of the next arrival to the previous history of
arrivals {t1, t2, . . . , tk} and the specified λ∗(t). This relation means the next arrival
time Tk+1 can easily be generated by the inverse transform method, i.e. draw U ∼
Unif[0,1] then tk+1 is found by solving

∫
tk+1

tk
λ∗(u)du = − log(U) .

For an exponentially decaying intensity the equation becomes

log(U) + λ(tk+1 − tk) −
α

β

⎛
⎝
k

∑
i=1

eβ(tk−1−ti) −
k

∑
i=1

e−β(tk−ti)
⎞
⎠
= 0 .

Solving for tk+1 can be done in linear time using the recursion of Eq. (4.6). However if
a different excitation function is used then this equation must be solved numerically,
e.g. using Newton’s method (Ogata 1981), which entails a significant computational
effort.

39

40 CHAPTER 6. SIMULATION METHODS

6.2 Ogata’s modified thinning algorithm

Hawkes process generation is a similar problem to inhomogeneous Poisson process
generation. The standard way to generate a inhomogeneous Poisson process which is
driven by intensity function λ(⋅) is via thinning. Formally the process is described by
Algorithm 1 (Lewis and Shedler 1979). The intuition is to generate a “faster” homo-
geneous Poisson process, and remove points probabilistically so that the remaining
points satisfy the time-varying intensity λ(⋅). The first process’ rate M cannot be
less than λ(⋅) over [0, T].

A similar approach can be used for the Hawkes process, called Ogata’s modified
thinning algorithm (Ogata 1981, Liniger 2009). The conditional intensity λ∗(⋅) does
not have an a.s. asymptotic upper bound, however it is common for the intensity to
be non-increasing in periods without any arrivals. This implies that for t ∈ (Ti, Ti+1],
λ∗(t) ≤ λ∗(T +

i) (i.e. the time just after Ti, when that arrival has been registered).
So the M value can be updated during each simulation. Algorithm 2 describes the
process and Fig. 6.1 shows an example of each thinning procedure.

Algorithm 1 Generate an inhomogeneous Poisson process by thinning

1: procedure PoissonByThinning(T , λ(⋅), M)
2: require: λ(⋅) ≤M on [0, T]
3: P ← [], t← 0.
4: while t < T do
5: E ← Exp(M).
6: t← t +E.
7: U ← Unif(0,M).
8: if t < T and U ≤ λ(t) then
9: P ← [P, t].

10: end if
11: end while
12: return P
13: end procedure

6.2. OGATA’S MODIFIED THINNING ALGORITHM 41

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3

3.5

4

t

U

λ(t)
M
Accepted Points
Rejected Points

(a) Poisson process

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

t

U

λ
∗(t)

M
Accepted Points
Rejected Points

(b) Hawkes process

Figure 6.1: Processes generated by thinning. (a) A Poisson process with intensity
λ(t) = 2 + sin(t), bounded above by M = 4. (b) A Hawkes process with (λ,α, β) =
(1,1,1.1). Each (t,U) point describes a suggested arrival at time t whose U value
is given in Algorithm 1 and Algorithm 2. Plus signs signs indicate rejected points,
circles accepted, and green squares the resulting point processes.

42 CHAPTER 6. SIMULATION METHODS

Algorithm 2 Generate an Hawkes process by thinning

1: procedure HawkesByThinning(T , λ∗(⋅))
2: require: λ∗(⋅) non-increasing in periods of no arrivals.
3: ε← 10−10 (some tiny value > 0).
4: P ← [], t← 0.
5: while t < T do
6: Find new upper bound: M ← λ∗(t + ε).
7: Generate next candidate point: E ← Exp(M), t← t +E.
8: Keep it with some probability: U ← Unif(0,M).
9: if t < T and U ≤ λ∗(t) then

10: P ← [P, t].
11: end if
12: end while
13: return P
14: end procedure

6.3 Superposition of Poisson processes

The immigration–birth representation gives rise to a simple simulation procedure:
generate the immigrant arrivals, then generate the descendants for each immigrant.
Algorithm 3 describes the procedure in full, with Fig. 6.2 showing an example reali-
sation.

Immigrants form a homogeneous Poisson process of rate λ, so over an interval
[0, T] the number of immigrants is Pois(λT) distributed. Conditioned on knowing
that there are k immigrants, then their arrival times C1,C2, . . . ,Ck are distributed
as the order statistics of i.i.d. Unif(0, T) random variables.

Each immigrant’s descendants form an inhomogeneous Poisson process. The ith
immigrant’s descendants arrive with intensity µ(t − Ci) for t > Ci. Denote Di to
be the number of descendants of immigrant i, then E[Di] = ∫

∞
0 µ(s) ds = n, and

hence Di
i.i.d.∼ Poi(n). Say that the descendants of the ith immigrant arrive at times

(Ci + E1,Ci + E2, . . . ,Ci + EDi
). Conditioned on knowing Di, Ej are i.i.d. random

variables distributed with p.d.f. µ(⋅)/n. For exponentially decaying intensities, this

simplifies to Ej
i.i.d.∼Exp(β).

6.3. SUPERPOSITION OF POISSON PROCESSES 43

Algorithm 3 Generate an Hawkes process by clusters

1: procedure HawkesByClusters(T , λ, α, β)
2: P ← {}.

3: Immigrants: k ← Poi(λT), C1,C2, . . . ,Ck
i.i.d.← Unif(0, T).

4: Descendants: D1,D2, . . . ,Dk
i.i.d.← Poi(α/β).

5: for i← 1 to k do
6: if Di > 0 then

7: E1,E2, . . . ,EDi

i.i.d.← Exp(β).
8: P ← P ∪ {Ci +E1,Ci +E2, . . . ,Ci +EDi

}.
9: end if

10: end for
11: Remove descendants outside [0, T]: P ← {Pi ∶ Pi ∈ P,Pi ≤ T}.
12: Add in immigrants and sort: P ← Sort(P ∪ {C1,C2, . . . ,Ck}).
13: return P
14: end procedure

0 1 2 3 4 5 6 7 8 9 10
0

5

10

t

F
a
m
il
y
N
u
m
b
e
r

(a)

0 2 4 6 8 10 12
0

5

10

t

λ
∗
(t
)

(b)

Figure 6.2: A Hawkes Poisson process generated by clusters. Plot (a) shows the
points generated by the immigrant–birth representation; it can be seen as a sequence
of vertically stacked “family trees”. The immigrant points are plotted as squares,
following circles of the same height and color are its offspring. The intensity function,
with (λ,α, β) = (1,2,1.2), is plotted in (b). The resulting Hawkes process arrivals
are drawn as crosses on the axis.

44 CHAPTER 6. SIMULATION METHODS

6.4 Other methods

This chapter’s contents are by no means a complete compilation of simulation tech-
niques available for Hawkes processes. Dassios and Zhao (2013) and Møller and
Rasmussen (2005) are alternatives to the methods listed above (see Appendix C.2.4
for a Matlab implementation of the former). Also not discussed is the problem of
simulating mutually-exciting Hawkes processes, however there are many free software
packages that will perform this functionality. Fig. 6.3 shows an example realisation
generated using the R ‘hawkes’ package (see also Roger Peng’s ‘ptproc’ package).

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

t

N
1
(t
)

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

t

N
2
(t
)

0 10 20 30 40 50 60 70 80 90 100
0

5

10

t

λ
∗
(t
)

Figure 6.3: A pair of mutually exciting Hawkes processes N1(t) and N2(t) with
parameters: λ1 = λ2 = 1, α1,1 = α1,2 = α2,1 = α2,2 = 2, β1,1 = β1,2 = β2,1 = β2,2 = 8. Note
that the symmetry in parameters means that λ∗1(t) = λ∗2(t) so only one is plotted.

Chapter 7

Conclusion
Hawkes processes are fundamentally fascinating models of reality. Standard prob-
ability theory models are Markovian and hence display a disregard for the history
of the process rarely seen in nature. The Hawkes process is structured around the
premise that the history matters, which partly explains why they have been studied
in such a broad range of applications.

If the exponentially decaying intensity can be utilised, then the joint process
(N(⋅), λ∗(⋅)) satisfies the Markov condition, and both processes exhibit amazing an-
alytical tractability. Explosion is avoided by α < β. The covariance density is a simple
symmetric scaled exponential curve, and the power spectral density is a shifted scaled
Cauchy p.d.f. The likelihood function and the compensator are elegant, and efficient
to calculate using recursive structures. Exact simulation algorithms can generate
this type of Hawkes process with optimal efficiency. Many aspects of the Hawkes
process remain obtainable with any selection of excitation function; for example, the
random time change theorem completely solves the problem of testing the goodness
of a model’s fit.

The use of Hawkes processes in finance appears itself to have been a self-exciting
process. Filimonov and Sornette (2012), Aı̈t-Sahalia et al. (2010), and Da Fonseca
and Zaatour (2014) formed the primary sources for the financial section of Chap-
ter 3; these papers are surprisingly recent (given the fact that model was introduced
in 1971) and are representative of a current surge in Hawkes process research.

“So we beat on, boats against the current,
borne back ceaselessly into the past.”1

1F. Scott Fitzgerald, “The Great Gatsby”.

45

46 CHAPTER 7. CONCLUSION

Bibliography
Aı̈t-Sahalia, Y., Cacho-Diaz, J., and Laeven, R. J. (2010). Modeling financial con-

tagion using mutually exciting jump processes. Technical Report 15850, National
Bureau of Economic Research, USA.

Asmussen, S. (2003). Applied Probability and Queues. Applications of Mathematics:
Stochastic Modelling and Applied Probability. Springer, second edition.

Azizpour, S., Giesecke, K., and Schwenkler, G. (2010). Exploring the sources of
default clustering. Working paper.

Bartlett, M. S. (1963a). The spectral analysis of point processes. Journal of the
Royal Statistical Society. Series B (Methodological), 25(2):264–296.

Bartlett, M. S. (1963b). Statistical estimation of density functions. Sankhyā: The
Indian Journal of Statistics, Series A, 25(3):245–254.

Bartlett, M. S. (1964). The spectral analysis of two-dimensional point processes.
Biometrika, 51(3/4):299–311.

Black, F. and Scholes, M. (1973). The pricing of options and corporate liabilities.
The Journal of Political Economy, 81(3):637–654.

Bowsher, C. G. (2007). Modelling security market events in continuous time:
intensity based, multivariate point process models. Journal of Econometrics,
141(2):876–912.

Brémaud, P. and Massoulié, L. (1996). Stability of nonlinear Hawkes processes. The
Annals of Probability, 24(3):1563–1588.

Brown, E., Barbieri, R., Ventura, V., Kass, R., and Frank, L. (2002). The time-
rescaling theorem and its application to neural spike train data analysis. Neural
computation, 14(2):325–346.

Carstensen, L. (2010). Hawkes processes and combinatorial transcriptional regulation.
PhD thesis, University of Copenhagen.

Chatalbashev, V., Liang, Y., Officer, A., and Trichakis, N. (2007). Exciting times
for trade arrivals. Stanford University MS&E 444 group project submission.

47

48 BIBLIOGRAPHY

Cox, D. R. (1955). Some statistical methods connected with series of events. Journal
of the Royal Statistical Society. Series B (Methodological), 17(2):129–164.

Cox, D. R. and Lewis, P. A. (1966). The Statistical Analysis of Series of Events.
Monographs on Applied Probability and Statistics, London: Chapman and Hall.

Crowley, S. (2013). Point process models for multivariate high-frequency irregularly
spaced data. Available at http://vixra.org/pdf/1211.0094v6.pdf.

Da Fonseca, J. and Zaatour, R. (2014). Hawkes process: Fast calibration, application
to trade clustering, and diffusive limit. Journal of Futures Markets, 34(6):548–579.

Daley, D. and Vere-Jones, D. (2003). An Introduction to the Theory of Point Pro-
cesses: Volume I: Elementary Theory and Methods. Springer.

Dassios, A. and Zhao, H. (2013). Exact simulation of Hawkes process with exponen-
tially decaying intensity. Electronic Communications in Probability, 18(62).

Durbin, J. (1961). Some methods of constructing exact tests. Biometrika, 53(3/4):41–
55.

Dyson, F. (2004). A meeting with Enrico Fermi. Nature, 427(6972):297–297.

Embrechts, P., Liniger, T., and Lin, L. (2011). Multivariate Hawkes processes: an
application to financial data. Journal of Applied Probability, 48A:367–378. Special
volume: a Festschrift for Søren Asmussen.

Filimonov, V. and Sornette, D. (2012). Quantifying reflexivity in financial markets:
toward a prediction of flash crashes. Physical Review E, 85(5):056108.

Filimonov, V. and Sornette, D. (2013). Apparent criticality and calibration issues
in the Hawkes self-excited point process model: application to high-frequency
financial data. arXiv preprint arXiv:1308.6756.

Giesecke, K. and Tomecek, P. (2005). Dependent events and changes of time. Working
paper.

Grimmett, G. and Stirzaker, D. (2001). Probability and Random Processes. Oxford
University Press.

Haug, E. G. and Taleb, N. N. (2014). Why we have never used the Black–Scholes–
Merton option pricing formula. Wilmott Magazine, 71.

http://vixra.org/pdf/1211.0094v6.pdf

BIBLIOGRAPHY 49

Hautsch, N. (2011). Econometrics of Financial High-Frequency Data. Springer.

Hawkes, A. G. (1971a). Spectra of some self-exciting and mutually exciting point
processes. Biometrika, 58(1):83–90.

Hawkes, A. G. (1971b). Point spectra of some mutually exciting point processes.
Journal of the Royal Statistical Society. Series B (Methodological), 33(3):438–443.

Hawkes, A. G. and Oakes, D. (1974). A cluster process representation of a self-
exciting process. Journal of Applied Probability, 11(3):493–503.

Kallenberg, O. (1976). Random measures. Akademie-Verlag Berlin.

Kim, S.-H. and Whitt, W. (2013). The power of alternative Kolmogorov–Smirnov
tests based on transformations of the data. Submitted to ACM Transactions on
Modeling and Computer Simulation.

Knuth, D. E. (2014). Art of Computer Programming, Volume 2: Seminumerical
Algorithms, The. Addison-Wesley Professional.

Kroese, D., Taimre, T., and Botev, Z. I. (2011). Handbook of Monte Carlo methods.
Wiley.

Kroese, D. P. and Botev, Z. I. (2014). Spatial process generation. To appear in:
Lectures on Stochastic Geometry, Spatial Statistics and Random Fields, Volume
II: Analysis, Modeling and Simulation of Complex Structures.

Lewis, P. A. (1964). A branching Poisson process model for the analysis of computer
failure patterns. Journal of the Royal Statistical Society. Series B (Methodological),
26(3):398–456.

Lewis, P. A. (1965). Some results on tests for Poisson processes. Biometrika,
52(1/2):67–77.

Lewis, P. A. (1970). Remarks on the theory, computation and application of the
spectral analysis of series of events. Journal of Sound and Vibration, 12(3):353–
375.

Lewis, P. A. and Shedler, G. S. (1979). Simulation of nonhomogeneous Poisson
processes by thinning. Naval Research Logistics Quarterly, 26(3):403–413.

Liniger, T. J. (2009). Multivariate Hawkes Processes. PhD thesis, Eidgenössische
Technische Hochschule ETH Zürich.

50 BIBLIOGRAPHY

Lorenzen, F. (2012). Analysis of Order Clustering Using High Frequency Data: A
Point Process Approach. PhD thesis, Swiss Federal Institute Of Technology Zurich.

Merton, R. C. (1976). Option pricing when underlying stock returns are discontinu-
ous. Journal of Financial Economics, 3(1):125–144.

Meyer, P.-A. (1971). Demonstration simplifiee d’un theoreme de knight. In Séminaire
de Probabilités V Université de Strasbourg, pages 191–195. Springer.

Mohler, G. O., Short, M. B., Brantingham, P. J., Schoenberg, F. P., and Tita, G. E.
(2011). Self-exciting point process modeling of crime. Journal of the American
Statistical Association, 106(493):100–108.

Møller, J. and Rasmussen, J. G. (2005). Perfect simulation of Hawkes processes.
Advances in Applied Probability, pages 629–646.

Ogata, Y. (1978). The asymptotic behaviour of maximum likelihood estimators
for stationary point processes. Annals of the Institute of Statistical Mathematics,
30(1):243–261.

Ogata, Y. (1981). On Lewis’ simulation method for point processes. Information
Theory, IEEE Transactions on, 27(1):23–31.

Ogata, Y. (1988). Statistical models for earthquake occurrences and residual analysis
for point processes. Journal of the American Statistical Association, 83(401):9–27.

Ogata, Y. (1999). Seismicity analysis through point-process modeling: A review.
Pure and Applied Geophysics, 155(2/4):471–507.

Ozaki, T. (1979). Maximum likelihood estimation of Hawkes’ self-exciting point
processes. Annals of the Institute of Statistical Mathematics, 31(1):145–155.

Papangelou, F. (1972). Integrability of expected increments of point processes and
a related random change of scale. Transactions of the American Mathematical
Society, 165:483–506.

Rasmussen, J. G. (2009). Temporal point processes: the conditional intensity func-
tion. Course notes for ‘rumlige punktprocesser’ (spatial point processes).

Rasmussen, J. G. (2013). Bayesian inference for Hawkes processes. Methodology and
Computing in Applied Probability, 15(3):623–642.

BIBLIOGRAPHY 51

Rubin, I. (1972). Regular point processes and their detection. Information Theory,
IEEE Transactions on, 18(5):547–557.

Schoenberg, F. (2002). On rescaled poisson processes and the brownian bridge.
Annals of the Institute of Statistical Mathematics, 54(2):445–457.

Tankov, P. (2003). Financial Modelling With Jump Processes. Chapman & Hall/CRC
Financial Mathematics Series. Taylor & Francis.

Watanabe, S. (1964). On discontinuous additive functionals and Lévy measures of a
Markov process. Japan. J. Math, 34(53-70):82.

Zhu, L. (2013). Central limit theorem for nonlinear Hawkes processes. Journal of
Applied Probability, 50(3):760–771.

52 BIBLIOGRAPHY

Appendix A

Extra Proof Details

A.1 Supplementary to Theorem 2 (part one)

R(τ) = E
⎡⎢⎢⎢⎣

dN(t)
dt

(λ + ∫
t+τ

−∞
µ(t + τ − s)dN(s))

⎤⎥⎥⎥⎦
− λ∗2

= λE [dN(t)
dt

] +E
⎡⎢⎢⎢⎣

dN(t)
dt

(∫
t+τ

−∞
µ(t + τ − s)dN(s))

⎤⎥⎥⎥⎦
− λ∗2

= λλ∗ +E [dN(t)
dt ∫

t+τ

−∞
µ(t + τ − s)dN(s)] − λ∗2 .

Introduce a change of variable v = s − t and multiply by dv
dv :

R(τ) = λλ∗ +E [∫
τ

−∞
µ(τ − v)dN(t)

dt

dN(t + v)
dv

dv] − λ∗2

= λλ∗ + ∫
τ

−∞
µ(τ − v)E [dN(t)

dt

dN(t + v)
dv

]dv − λ∗2 .

The expectation is (a shifted) R(c)(v). Substitute that and Eq. (3.6) in:

R(τ) = λλ∗ + ∫
τ

−∞
µ(τ − v)(R(c)(v) + λ∗2)dv − λ∗2

= λλ∗ + ∫
τ

−∞
µ(τ − v) (λ∗δ(τ) +R(τ))dv + λ∗2∫

τ

−∞
µ(τ − v)dv − λ∗2

= λλ∗ + λ∗µ(τ) + ∫
τ

−∞
µ(τ − v)R(τ)dv + nλ∗2 − λ∗2

= λ∗µ(τ) + ∫
τ

−∞
µ(τ − v)R(τ)dv + λ∗(λ − (1 − n)λ∗) .

Using Eq. (3.5) yields

λ − (1 − n)λ∗ = λ − (1 − n) λ

1 − n = 0 .

∴ R(τ) = λ∗µ(τ) + ∫
τ

−∞
µ(τ − v)R(τ)dv .

53

54 APPENDIX A. EXTRA PROOF DETAILS

A.2 Supplementary to Theorem 2 (part two)

Split the right-hand side of the equation into three functions g1, g2 and g3:

R(τ) = λ∗µ(τ)
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
g1(τ)

+∫
∞

0
µ(τ + v)R(v)dv

´¹¹¸¹¹¶
g2(τ)

+∫
τ

0
µ(τ − v)R(v)dv

´¹¹¹¸¹¹¹¶
g3(τ)

. (A.1)

Taking the Laplace transform of each term gives

L {g1(τ)} (s) = ∫
s

0
e−sτλ∗αe−βτ dτ = α

s + βλ
∗ ,

L {g2(τ)} (s) = ∫
∞

0
e−sτ∫

∞

0
αe−β(τ+v)R(v)dv dτ

= α∫
∞

0
e−βvR(v)∫

∞

0
e−τ(s+β) dτ dv

= α

s + β ∫
∞

0
e−βvR(v)dv

= α

s + βL {R} (β) , and

L {g3(τ)} (s) = L {µ(τ)} (s)L {R(τ)} (s) = α

s + βL {R(τ)} (s) .

Therefore the Laplace transform of Eq. (A.1)

L {R(τ)} (s) = α

s + β (λ∗ +L {R(τ)} (β) +L {R(τ)} (s)) . (A.2)

Substituting s = β and rearranging gives that

L {R(τ)} (β) = αλ∗

2(β − α) . (A.3)

So substituting the value of L {R(τ)} (β) into Eq. (A.2) means

L {R(τ)} (s) = α

s + β
⎛
⎝
λ∗ + αλ∗

2(β − α) +L {R(τ)} (s)
⎞
⎠

⇒L {R(τ)} (s) =
α
s+β (λ∗ + αλ∗

2(β−α))
1 − α

s+β

∴ L {R(τ)} (s) = αλ∗(2β − α)
2(β − α)(s + β − α) .

Appendix B

Open Source Contributions

B.1 R package: ‘Hawkes’

The R ‘Hawkes’ package uses C++ to compute likelihoods. This particular operation
has been optimised to be 20–30 times faster. Below is the optimised function (revision
63, https://r-forge.r-project.org/projects/hawkes/):

1 // [[Rcpp : : export]]
2 double l ike l ihoodHawkes (SEXP lambda0 ,SEXP alpha ,SEXP beta ,SEXP ⤦

Ç h i s t o r y)
3 {
4 i n t dimension = getDimension (lambda0) ;
5

6

7 double r e s = 0 ;
8

9 i f (dimension == 1)
10 {
11 double m lambda0 = as<double>(lambda0) ;
12 double m alpha = as<double>(alpha) ;
13 double m beta = as<double>(beta) ;
14 Rcpp : : NumericVector m history (h i s t o r y) ;
15 double m T = m history [m history . s i z e () - 1] ;
16

17 i f (m beta<m alpha) {
18 stop (” Unstable . You must have alpha < beta ”) ;
19 }
20 double *A = new double [m history . s i z e ()] ;
21 A[0] = 0 ;
22 f o r (i n t i = 1 ; i < m history . s i z e () ; i++)
23 {
24 A[i] = (1.0+A[i - 1]) *exp (- m beta * (m history [i] - ⤦

Ç m history [i - 1])) ;
25 }
26

27 double sum = 0 . 0 ;
28 f o r (i n t i = 0 ; i < m history . s i z e () ; i++)

55

https://r-forge.r-project.org/projects/hawkes/

56 APPENDIX B. OPEN SOURCE CONTRIBUTIONS

29 {
30 sum = sum+ (1 - exp (- m beta * (m T - m history [i]))) ;
31 }
32 sum = (m alpha / m beta) * sum ;
33 r e s = - m lambda0 * m T - sum ;
34

35

36 f o r (i n t i = 0 ; i < m history . s i z e () ; i++)
37 {
38 r e s = r e s + log (m lambda0+m alpha*A[i]) ;
39 }
40 d e l e t e [] A;
41

42 re turn (- r e s) ;
43 } e l s e {
44 Rcpp : : NumericVector lambda0 inte rna l (lambda0) ;
45 Rcpp : : NumericMatrix a l p h a i n t e r n a l (alpha) ;
46 Rcpp : : NumericVector b e t a i n t e r n a l (beta) ;
47 arma : : vec m lambda0 (lambda0 inte rna l . begin () , dimension , ⤦

Ç f a l s e) ;
48 arma : : mat m alpha (a l p h a i n t e r n a l . begin () , dimension , ⤦

Ç dimension , f a l s e) ;
49 arma : : vec m beta (b e t a i n t e r n a l . begin () , dimension , f a l s e) ;
50 Rcpp : : L i s t m history (h i s t o r y) ;
51

52 double m T = 0 ;
53 i n t * s i z e s = new i n t [dimension] ;
54 Rcpp : : NumericVector * v ec to r s = new ⤦

Ç Rcpp : : NumericVector [dimension] ;
55 f o r (i n t n = 0 ; n < dimension ; n++)
56 {
57 v ec to r s [n] = as<Rcpp : : NumericVector>(m history [n]) ;
58 s i z e s [n] = v ec to r s [n] . s i z e () ;
59 m T = std : : max(ve c t o r s [n] [s i z e s [n] - 1] ,m T) ;
60 }
61

62 f o r (i n t m = 0 ; m < dimension ; m++)
63 {
64 double sum = 0 . 0 ;
65

66 double *Rdiag = new double [s i z e s [m]] ;
67 double *RNonDiag = new double [s i z e s [m]] ;
68 i n t * index=new i n t [dimension] ;
69 f o r (i n t n = 0 ; n < dimension ; n++)
70 {
71 index [n] = 0 ;

B.1. R PACKAGE: ‘HAWKES’ 57

72 }
73 Rdiag [0] = 0 ;
74 RNonDiag [0] = 0 ;
75 f o r (i n t i = 1 ; i < s i z e s [m] ; i++)
76 {
77 Rdiag [i] = (1.0+ Rdiag [i - 1]) *exp (- m beta (m) * ⤦

Ç (v e c t o r s [m] [i] - v e c t o r s [m] [i - 1])) ;
78 }
79 f o r (i n t i = 1 ; i < s i z e s [m] ; i++)
80 {
81 RNonDiag [i] = (RNonDiag [i - 1]) *exp (- m beta (m) * ⤦

Ç (v e c t o r s [m] [i] - v e c t o r s [m] [i - 1])) ;
82 f o r (i n t n = 0 ; n < dimension ; n++)
83 {
84 i f (m==n)
85 {
86 cont inue ;
87 }
88 f o r (i n t k = index [n] ; k < s i z e s [n] ; k++)
89 {
90 i f (v e c t o r s [n] [k] >= ve c t o r s [m] [i - 1])
91 {
92 i f (v e c t o r s [n] [k] < v ec to r s [m] [i])
93 {
94 RNonDiag [i] += exp (- m beta (m) * ⤦

Ç (v e c t o r s [m] [i] - v e c t o r s [n] [k])) ;
95 }
96 e l s e
97 {
98 index [n] = k ;
99 break ;

100 }
101 }
102 }
103 }
104 }
105 f o r (i n t n = 0 ; n < dimension ; n++)
106 {
107 f o r (i n t k = 0 ; k < s i z e s [n] ; k++)
108 {
109 sum = sum + (m alpha (m, n) / m beta (m)) *

110 (1 - exp (- m beta (m) * (m T - ⤦
Ç v ec to r s [n] [k]))) ; // Beta d iagona l

111

112 }
113 }

58 APPENDIX B. OPEN SOURCE CONTRIBUTIONS

114

115 r e s = r e s - m lambda0 (m) * m T - sum ;
116

117

118 f o r (i n t i = 0 ; i < s i z e s [m] ; i++)
119 {
120 sum = m lambda0 (m) ;
121 f o r (i n t n = 0 ; n < dimension ; n++)
122 {
123

124 i f (m==n)
125 {
126 sum = sum+m alpha (m, n) *Rdiag [i] ;
127 }
128 e l s e
129 {
130 sum = sum +m alpha (m, n) *RNonDiag [i] ;
131 }
132 }
133 r e s = r e s+log (sum) ;
134 }
135 d e l e t e [] Rdiag ;
136 d e l e t e [] RNonDiag ;
137 d e l e t e [] index ;
138 }
139 d e l e t e [] s i z e s ;
140 d e l e t e [] v e c t o r s ;
141

142 re turn (- r e s) ;
143 }
144 }

B.2. HAWKES EXPLANATORY ARTICLE 59

B.2 Hawkes explanatory article

A very gentle introduction to Hawkes processes using R and Python can be found
online at http://jheusser.github.io/2013/09/08/hawkes.html. However the
corresponding example code had become stale as of April 2014. The following
figure shows the git diff of the commit which fixed that example (commit hash:
caebd645c1a3e310276379f4477ccdbf585b4656, modified file: hawkes.py):

http://jheusser.github.io/2013/09/08/hawkes.html

60 APPENDIX B. OPEN SOURCE CONTRIBUTIONS

Appendix C

MATLAB Implementations

C.1 Goodness of fit

C.1.1 Multiple tests

To generate Fig. 5.1, Fig. 5.2, and Fig. 5.3, and to run the described hypothesis tests:

1 %% Setup work environment
2 clear all; rng(7);
3

4 % Simulate and plot the counting process.
5 figure(1); clf; hold on;
6

7 % Hawkes parameters.
8 lambda = 0.5; % Background intensity.
9 alpha = 2; % Jump in intensity after arrival.

10 beta = 2.1; % Decay rate.
11 k = 1000; % Number of jump times to look at.
12

13 % Simulate the process and plot it.
14 T = SimulateHawkes(lambda, alpha, beta, k);
15 stairs([0 T], 0:numel(T));
16

17 % Discretise time.
18 t = linspace(0, max(T), 1e3);
19

20 % Plot the expectation of N(t).
21 kappa = beta - alpha;
22 EN = (lambda*beta/kappa)*t + ...
23 (lambda/kappa)*(1-1*beta/kappa)*(1-exp(-kappa*t));
24 plot(t, EN, 'r--');
25

26 axis([0 max(T) 0 numel(T)]);
27 legend({'$N(t)$', '$\mathbb{E}[N(t)]$'}, 'Location', ⤦

Ç 'NorthWest', 'interpreter', 'latex');
28 drawnow;
29 set(gcf,'OuterPosition',[500,500,300,300]);

61

62 APPENDIX C. MATLAB IMPLEMENTATIONS

30 matlab2tikz('..\images\goodness1.tikz');
31

32 %% Plot the conditional intensity.
33 figure(2); clf; hold on;
34

35 % Plot lambda(t).
36 both = sort([t, (T+0.1)]);
37 lboth = cif(both, T, lambda, alpha, beta);
38 l = cif(t, T, lambda, alpha, beta);
39 plot(both, lboth);
40

41 % Plot its expectation.
42 El = (lambda*beta/kappa) + lambda*(1-beta/kappa)*exp(-kappa*t);
43 plot(t, El, 'r--');
44

45 axis([0 max(T) 0 max(l)]);
46 legend({'$\lambdaˆ*(t)$', '$\mathbb{E}[\lambdaˆ*(t)]$'}, ⤦

Ç 'Location', 'NorthWest', 'interpreter', 'latex');
47 set(gcf,'OuterPosition',[500,900,300,300]); drawnow;
48 matlab2tikz('..\images\goodness2.tikz');
49

50 %% Plot the compensator.
51 figure(3); clf; hold on;
52

53 comp = zeros(1, numel(t));
54 for i=1:numel(t)
55 comp(i) = compensator(t(i),[lambda, alpha, beta], T);
56 end
57 plot(t, comp, 'm');
58

59 axis([0 max(T) 0 max(comp)]);
60 legend({'$\Lambda(t)$'}, 'Location', 'NorthWest', 'interpreter', ⤦

Ç 'latex');
61 set(gcf,'OuterPosition',[500,500,300,300]); drawnow;
62 matlab2tikz('..\images\goodness3.tikz');
63

64 %% Transform the arrival times by the compensator to get unit ⤦
Ç rate PP.

65 figure(4); clf; hold on;
66

67 % Calculate the compensator exactly for the original arrival times.
68 unitT = zeros(1, numel(T));
69 for i=1:numel(T)
70 unitT(i) = compensator(T(i),[lambda, alpha, beta], T);
71 end
72

C.1. GOODNESS OF FIT 63

73 % Plot transformed PP.
74 stairs([0 unitT], 0:numel(unitT));
75

76 % Plot the expected unit rate PP.
77 plot(0:ceil(max(unitT)), 0:ceil(max(unitT)), 'r--');
78

79 axis([0 max(unitT) 0 numel(unitT)]);
80 legend({'$Nˆ*(t)$', '$\mathbb{E}[Nˆ*(t)]$'}, 'Location', ⤦

Ç 'NorthWest', 'interpreter', 'latex');
81 set(gcf,'OuterPosition',[500,500,300,300]); drawnow;
82 matlab2tikz('..\images\goodness4.tikz');
83

84 % MLE Estimate for rate assuming tranformed into a PP
85 lHat = numel(unitT) / max(unitT);
86 fprintf('Assuming this is a PP, estimate that lambda = %g\n', ⤦

Ç lHat);
87

88 %% Hypothesis test: null H is lambda = 1, alt H is lambda != 1.
89 % test statistic T = n 0 = numel(unitT), assuming t 0 = ⤦

Ç max(unitT) is
90 % fixed. Then T ~ Pois(t 0).
91 n 0 = numel(unitT);
92 t 0 = unitT(numel(unitT)-1);
93 p = 2 * min([poisscdf(n 0, t 0) (1-poisscdf(n 0-1, t 0))]);
94 fprintf('Null hyp: This is a unit rate PP, p value = %g\n', p);
95 if p < 0.1 | | isnan(p)
96 fprintf('Failure!\n');
97 else
98 fprintf('Success!\n');
99 end

100

101 %% Q-Q plot to check interarrival times are exponentially ⤦
Ç distributed.

102 figure(5); clf; hold on;
103

104 % Specify the quantiles to display.
105 quants = 0.01:0.01:0.99;
106

107 % Calculate the expected theoretical result from Exp(1).
108 x = -log(1-quants);
109

110 % Find empirical quantiles from the data.
111 y = quantile(diff(unitT), quants);
112

113 % Plot them against each other. Should get points around y=x.
114 scatter(x, y);

64 APPENDIX C. MATLAB IMPLEMENTATIONS

115 plot([0 max([x y])], [0 max([x y])], 'r');
116 axis([0 max([x y]) 0 max([x y])]);
117 xlabel('Expected', 'interpreter', 'latex');
118 ylabel('Observed', 'interpreter', 'latex');
119

120 set(gcf,'OuterPosition',[500,500,300,300]); drawnow;
121 matlab2tikz('..\images\goodness5.tikz');
122

123 %% Test for autocorrelation in transformed interarrival times.
124 % Reference: Lorenzen (2012) S4.2 pg 26.
125 figure(6); clf;
126

127 % Interarrival times
128 iit = diff(unitT);
129

130 % Transform via c.d.f. of Exp(1) r.v.
131 unif = 1 - exp(-iit);
132

133 % Plot U k vs U {k+1}. Should get 2D points uniformly on [0,1]ˆ2.
134 scatter(unif(1:(numel(unif)-1)), unif(2:numel(unif)), '*');
135 xlabel('$U k = F {\mathrm{Exp}(1)}(tˆ* k-tˆ* {k-1})$', ⤦

Ç 'interpreter', 'latex');
136 ylabel('$U {k+1} = F {\mathrm{Exp}(1)}(tˆ* {k+1}-tˆ* k)$', ⤦

Ç 'interpreter', 'latex');
137 drawnow;
138 set(gcf,'OuterPosition',[500,500,300,300]); drawnow;
139 matlab2tikz('..\images\goodness6.tikz');
140

141 %% Goodness of fit test: Kolmogorov-Smirnov test
142 % Reference: Daley, Vere-Jones Algorithm 7.4V pg 262
143 figure(7); clf; hold on;
144 alpha = 0.05;
145

146 stairs([0, unitT ./ max(unitT)], (0:numel(unitT)) ./ numel(unitT));
147 ciWidth = norminv(1-alpha/2)/sqrt(max(unitT));
148 plot([0, 1], [ciWidth, 1+ciWidth], 'r--');
149 plot([0, 1], [-ciWidth, 1-ciWidth], 'r--');
150

151 xlabel('Normalised time', 'interpreter', 'latex');
152 ylabel('Normalised number of arrivals', 'interpreter', 'latex');
153 axis([0,1,0,1]);
154 drawnow;
155 set(gcf,'OuterPosition',[500,500,400,400]);
156 export fig('..\images\broken test.pdf', '-pdf', '-transparent');
157

158 %% Good of fit test: Lewis Test

C.1. GOODNESS OF FIT 65

159 % References:
160 % - The Power of Alternative Kolmogorov-Smirnov Tests Based on
161 % Transformations of the Data, Song-Hee Kim, Ward Whitt,
162 % - Some results on tests for Poisson processes By PETER A. W. ⤦

Ç LEWIS
163 %
164 % Conditional uniform: null hyp is X k, k=1,.., n are ⤦

Ç distribution F
165 % U k = F(X k) for k=1,.., n ~ U[0,1]
166 % Y k = -log(1-U k) for k=1,.., n ~ Exp(1), view as IA times of ⤦

Ç PP(1)
167 % T k = sum {i<=k} Y i, for k=1,..,n, view as arrival times of ⤦

Ç PP(1)
168 % Use T k/T n k=1,.., n-1 ~ Unif[0,1].
169 %
170 % Lewis test: null hyp is X k, k=1,.., n are distribution F
171 % Use T k/T n k=1,.., n-1 ~ Unif[0,1].
172 % U k = F(X k) for k=1,.., n ~ U[0,1]
173 % Y k = -log(1-U k) for k=1,.., n ~ Exp(1), view as IA times of ⤦

Ç PP(1)
174 % T k = sum {i<=k} Y i, for k=1,..,n, view as arrival times of ⤦

Ç PP(1)
175 % U k = T k/T n k=1,.., n-1 ~ Unif[0,1].
176 %
177 % Now apply Durbin's modification (for n-1 points instead of n)
178 % U (k) k=1,...,n-1 are ordered, set U (0) = 0, U(n) = 1.
179 % X' k = (n+1-k) (U (k)-U (k-1)) k=1,...,n ~ Exp(1)
180 % T' k = sum {i<=k} X' i, for k=1,..,n, view as arrival times of ⤦

Ç PP(1)
181 % Use T k/T n k=1,.., n-1 ~ Unif[0,1].
182 % Then calculate C(X) = Coefficient of Variation = std(X)/mean(X)
183 % If C(diff(unitT)) > 1 use upper KS test D+ n
184 % If C(diff(unitT)) < 1 use lower KS test D- n
185

186 % Use Monte Carlo simulation to find an approx. dist. for KS test.
187 % Reference: Statistical Modeling & Computation, Kroese & Chan
188 K = 10000; % Number of trials
189 DN = zeros(1, K);
190 n = numel(unitT);
191 for k=1:K
192 i = 1:n;
193 y = sort(rand(1, n));
194 DN(k) = max(max(abs(y-i/n)), max(abs(y-(i-1)/n)));
195 end
196

197 R = quantile(DN, 0.20);

66 APPENDIX C. MATLAB IMPLEMENTATIONS

198

199 % MY CASE: null hypothesis is that X 1, X 2, ... X N are from a ⤦
Ç Hawkes

200 % process. Daley-Vere Jones says that w.p 1 then tau i = ⤦
Ç Lambda*(t i) is

201 % is unit rate PP iff t i is a realization from the point ⤦
Ç process defined

202 % by Lambda*(t i). In the code tau i is stored in "unitT".
203

204 % New null hypothesis: T i, i = 1,..., n are from unit rate PP.
205 % Use something like conditional uniformity to transform this ⤦

Ç problem into
206 % U k = T k/T n k=1,.., n-1 ~ Unif[0,1].
207 % Next apply Durbin's modification
208

209 % Apply conditional uniformity to transform this problem into
210 % U k = T k/T n k=1,.., n-1 ~ Unif[0,1].
211 NT = numel(unitT);
212 U = unitT(1:(NT-1)) ./ unitT(NT);
213

214 % Reset so that U k is defined for k=1,..,n. It is already sorted.
215 n = numel(U);
216

217 % C = U (j) - U (j-1) 2 <= j <= n+1, C 1 = U (1), C (n+1) = 1-U (n)
218 C = diff([0 U 1]);
219

220 % X' k = (n+2-k) (C (k)-C (k-1)) k=1,...,n+1 ~ Exp(1)
221 k=1:(n+1);
222 XPrime = (n+2-k) .* diff(sort([0 C]));
223

224 % T' k = sum {i<=k} X' i, for k=1,..,n, view as arrival times of ⤦
Ç PP(1)

225 TPrime = cumsum(XPrime);
226

227 % Use U' = T' k/T' n k=1,.., n-1 ~ Unif[0,1].
228 UPrime = TPrime(1:(n-1)) / TPrime(n);
229

230 figure(5);
231 clf(5);
232

233 subplot(2, 1, 1);
234 hold on;
235 ecdf(U);
236 title('Conditional Uniformity Test for Poissonness');
237 plot([0 1], [R 1+R], 'r');
238 plot([0 1], [-R 1-R], 'r');

C.1. GOODNESS OF FIT 67

239 axis([0 1 0 1]);
240 legend('Original ECDF (Uniform)', 'Approx. 80% CI', ...
241 'Location', 'NorthWest');
242

243 subplot(2, 1, 2);
244 hold on;
245 ecdf(UPrime);
246 title('Extended Test for Poissonness (includes Durbins ⤦

Ç Modification)');
247 plot([0 1], [R 1+R], 'r');
248 plot([0 1], [-R 1-R], 'r');
249 axis([0 1 0 1]);
250 legend('Transformed ECDF (Uniform)', 'Approx. 80% CI', ...
251 'Location', 'NorthWest');
252

253 % Now apply Kolmogorov-Smirnov test to UPrime.
254 n = n-1; % now disregarding the last point
255 dn plus = max(((1:n)./n) - UPrime);
256 dn minus = max(UPrime - ((0:(n-1))./n));
257 dn = max([dn plus dn minus]);
258

259 % Estimate the p value for this statistic
260 p = sum(DN >= dn) / K;
261 fprintf('Performed test and found p=%g\n', p);
262 if p >= 0.20
263 fprintf('Accept null hypothesis, this is a Hawkes Process!\n');
264 else
265 fprintf('Reject null hypothesis, this is not a Hawkes ⤦

Ç Process!\n');
266 end

C.1.2 Brownian motion approximation

To generate Fig. 5.4a and Fig. 5.5:

1 %% Testing Daley, Vere-Jones Algorithm 7.4.V (p. 262).
2 rng(1);
3 alphas = 0.01:0.01:0.99;
4

5 % Observed time horizon.
6 T = 1e3;
7

8 % Number of tests to perform for each alpha value.
9 numTests = 1e3;

68 APPENDIX C. MATLAB IMPLEMENTATIONS

10

11 % Create a number of Poisson processes; create 2*T interarrival ⤦
Ç times.

12 e = exprnd(1, 2*T, numTests);
13

14 % Take the cumulative sum to get arrival times.
15 tMany = cumsum(e);
16

17 % The test relies on a scaled stair function, so preprocess this ⤦
Ç stair

18 % function for each Poisson process before the tests.
19 stairVals = cell(numTests, 3);
20

21 % Also collect the maximiser of the compensated scaled Poisson ⤦
Ç process.

22 Ms = zeros(numTests, 1);
23

24 for i=1:numTests
25 % Extract the arrival times, and crop those after the obs. ⤦

Ç window.
26 points = tMany(:,i); points = points(points < T);
27 k = numel(points);
28

29 % Create the step function.
30 x = points ./ T;
31 y = (1:k) ./ k;
32 [xx, yy] = stairs(x, y);
33

34 % Store these values.
35 stairVals{i,1} = xx;
36 stairVals{i,2} = yy;
37

38 % Create the compensated scaled Poisson process.
39 stairVals{i,3} = (yy.*k - (xx .*T))./sqrt(T);
40

41 % Find the maximiser of the compensated scaled Poisson process.
42 Ms(i) = xx(stairVals{i,3} == max(stairVals{i,3}));
43 end
44

45 observedPasses = zeros(numel(alphas), 1);
46

47 for i = 1:numel(alphas)
48 % Significance level: calculate z value.
49 alpha = alphas(i); z = norminv(1-alpha/2);
50

C.1. GOODNESS OF FIT 69

51 % Binary score for whether the corresponding test passed or ⤦
Ç failed.

52 results = zeros(numTests, 1);
53

54 % For each Poisson process see whether it lies within the ⤦
Ç confidence

55 % bands.
56 for test=1:numTests
57 ciWidth = norminv(1-alpha/2)/sqrt(T);
58 yUp = stairVals{test,1} + ciWidth;
59 yDown = stairVals{test,1} - ciWidth;
60

61 isAbove = any(stairVals{test,2} > yUp);
62 isBelow = any(stairVals{test,2} < yDown);
63 if ~(isAbove | | isBelow)
64 results(test) = 1;
65 end
66 end
67

68 observedPasses(i) = sum(results) / numTests;
69 end
70

71 % Plot the results.
72 figure(1); clf; hold on;
73 plot([0,1], [0,1], 'r--');
74 plot(1-alphas, observedPasses, 'b*-');
75

76 xlabel('$1-\alpha$', 'interpreter', 'latex');
77 ylabel('Observed acceptance fraction', 'interpreter', 'latex');
78 set(gcf,'OuterPosition',[500,500,400,400]);
79 export fig('..\images\bm approx test.pdf', '-pdf', '-transparent');
80

81 %% Fixed algorithm.
82 % Plot one of the 'Brownian motions'.
83 figure(2); clf; plot(stairVals{1,1}, stairVals{1,3});
84 set(gcf,'OuterPosition',[500,500,400,400]);
85 export fig('..\images\compensated pp.pdf', '-pdf', '-transparent');
86

87 fixedObservedPasses = zeros(numel(alphas), 1);
88

89 for i = 1:numel(alphas)
90 % Significance level: calculate z value.
91 alpha = alphas(i);
92

93 % Binary score for whether the corresponding test passed or ⤦
Ç failed.

70 APPENDIX C. MATLAB IMPLEMENTATIONS

94 results = zeros(numTests, 1);
95

96 % 100(1-alpha)% confidence interval for the location of the ⤦
Ç maximum.

97 lower = betainv(alpha/2, 0.5, 0.5);
98 upper = betainv(1-alpha/2, 0.5, 0.5);
99

100 % For each 'Brownian motion' see whether it's maximiser lies ⤦
Ç within

101 % the confidence inveral.
102 for test=1:numTests
103 % Check whether inside the confidence intervals.
104 m = Ms(test); %max(stairVals{test, 2});
105

106 if m >= lower && m <= upper
107 results(test) = 1;
108 end
109 end
110

111 fixedObservedPasses(i) = sum(results) / numTests;
112 end
113

114 % Plot the results.
115 figure(3); clf; hold on;
116 plot([0,1], [0,1], 'r--');
117 plot(1-alphas, fixedObservedPasses, 'b-');
118

119 xlabel('$1-\alpha$', 'interpreter', 'latex');
120 ylabel('Observed acceptance fraction', 'interpreter', 'latex');
121 set(gcf,'OuterPosition',[500,500,400,400]);
122 export fig('..\images\fixed bm approx test.pdf', '-pdf', ⤦

Ç '-transparent');
123

124 %% Plot compensated Poisson processes.
125 rng(4);
126 Ts = [10, 100, 1e4];
127 for i=1:numel(Ts);
128 T = Ts(i);
129

130 % Create a number of Poisson processes; create 2*T ⤦
Ç interarrival times.

131 e = exprnd(1, 2*T, 1);
132

133 % Take the cumulative sum to get arrival times, and crop ⤦
Ç those after

134 % the obs. window.

C.1. GOODNESS OF FIT 71

135 points = cumsum(e); points = points(points < T);
136 k = numel(points);
137

138 % Create the step function.
139 x = [0; points ./ T];
140 y = [0; (1:k)' ./ k];
141 [xx, yy] = stairs(x, y);
142

143 % Create the compensated scaled Poisson process.
144 compPP = (yy.*k - (xx .*T))./sqrt(T);
145

146 % Plot the process.
147 figure(3+i); clf;
148 plot(xx, compPP); %title(sprintf('T = %d', T));
149 xlabel('t', 'interpreter', 'latex');
150 ylabel('$M(t)$', 'interpreter', 'latex');
151

152 % Save it.
153 set(gcf,'OuterPosition',[500,500,300,300]);
154 name = sprintf('..\\images\\comp pp %d.pdf', T);
155 export fig(name, '-pdf', '-transparent');
156 end
157

158 % Plot actual Brownian motion for comparison.
159 figure(6); clf; dt = 1e-4;
160 bm = cumsum(normrnd(0, sqrt(dt), 1/dt, 1));
161 plot(linspace(0, 1, numel(bm)), bm);
162 xlabel('t', 'interpreter', 'latex');
163 ylabel('$B(t)$', 'interpreter', 'latex');
164 set(gcf,'OuterPosition',[500,500,300,300]);
165 export fig('..\images\comp pp infinity.pdf', '-pdf', ⤦

Ç '-transparent');

72 APPENDIX C. MATLAB IMPLEMENTATIONS

C.2 Simulation methods

C.2.1 Inhomogeneous Poisson process by thinning

To generate Fig. 6.1a:

1 rng(2);
2 lambda = @(t) 2 + sin(t);
3 M = 4;
4 T = 4*pi;
5

6 p = []; py = [];
7

8 r = []; ry = [];
9

10 t = 0;
11

12 while t < T
13 t = t + exprnd(1/M);
14 if t < T
15 u = rand();
16 if u <= lambda(t)/M
17 p = [p, t];
18 py = [py, M*u];
19 else
20 r = [r, t];
21 ry = [ry, M*u];
22 end
23 end
24 end
25

26 figure(1); clf; hold on;
27 t = 0:0.01:T;
28 xlabel('t', 'interpreter', 'latex');
29 ylabel('U', 'interpreter', 'latex');
30 plot(t, lambda(t));
31 line([0, T], [M, M], 'LineWidth', 4);
32 scatter(p, py, 'o');
33 scatter(r, ry, '+');
34 scatter(p, zeros(size(p)), 80, [0 .5 0], 's', 'filled');
35 for i=1:numel(p)
36 line([p(i), p(i)], [0, py(i)], 'LineStyle', '--', 'Color', ⤦

Ç [0 .5 0]);
37 end

C.2. SIMULATION METHODS 73

38 axis([0, T, 0, M+.01]);
39 legend({'$\lambda(t)$','M','Accepted Points','Rejected ⤦

Ç Points'}, 'interpreter', 'latex');
40

41 set(gcf,'OuterPosition',[700,500,700,500])
42 export fig('..\images\pp.pdf', '-pdf', '-transparent');

C.2.2 Hawkes process by thinning

To generate Fig. 6.1b:

1 % HP CLUSTER Generate a Hawkes process using the thinning ⤦
Ç algorithm.

2 clear all; rng(8);
3

4 % The time to simulate until.
5 T = 4;
6

7 % Hawkes process parameters.
8 lambda = 1; alpha = 1; beta = 1.2;
9

10 % Current maximum of the process.
11 M = lambda;
12

13 p = []; py = [];
14 r = []; ry = [];
15

16 t = 0;
17 figure(1); clf; hold on;
18

19 MXs = [];
20 MYs = [];
21

22 while t < T
23 lastM = M; lastT = t;
24 M = cif(t+1e-10, p, lambda, alpha, beta);
25

26 t = t + exprnd(1/M);
27 MXs = [MXs, [lastT; t]];
28 MYs = [MYs, [M; M]];
29

30 if t < T
31 u = rand();
32 if u <= cif(t, p, lambda, alpha, beta)/M

74 APPENDIX C. MATLAB IMPLEMENTATIONS

33 p = [p, t];
34 py = [py, M*u];
35 else
36 r = [r, t];
37 ry = [ry, M*u];
38 end
39 end
40 end
41

42

43 t = 0:0.01:T; lambdas = cif(t, p, lambda, alpha, beta);
44 xlabel('t', 'interpreter', 'latex');
45 ylabel('U', 'interpreter', 'latex');
46

47

48 h = zeros(4, 1);
49 h(1) = plot(t, lambdas);
50 h(3) = scatter(p, py, [], [0 .5 0], 'o');
51 h(4) = scatter(r, ry, 'r+');
52

53 many = line(MXs, MYs, 'Color', 'b', 'LineWidth', 3);
54 h(2) = many(1);
55

56 scatter(p, zeros(size(p)), 80, [0 .5 0], 's', 'filled');
57 for i=1:numel(p)
58 line([p(i), p(i)], [0, py(i)], 'LineStyle', '--', 'Color', ⤦

Ç [0 .5 0]);
59 end
60 axis([0, T, 0, max(lambdas)*1.05]);
61

62 legend(h, {'$\lambdaˆ*(t)$','M', 'Accepted Points','Rejected ⤦
Ç Points'}, 'interpreter', 'latex');

63

64 set(gcf,'OuterPosition',[0,0,700,500])
65 export fig('..\images\hp thinning.pdf', '-pdf', '-transparent');

C.2.3 Hawkes process by clustering

To generate Fig. 6.2:

1 % HP CLUSTER Generate a Hawkes process using the clustering ⤦
Ç approach.

2 % I.e. generate cluster centres (i.e. immigrants), then create ⤦
Ç the rest

C.2. SIMULATION METHODS 75

3 % of the clusters (i.e. the offspring).
4 clear all; rng(4);
5

6 % The time to simulate until.
7 T = 10;
8

9 % Hawkes process parameters.
10 lambda = 1; alpha = 2; beta = 1.2;
11

12 % Generate the number and location of cluster centres, and the ⤦
Ç number of

13 % descendents in each cluster.
14 k = poissrnd(lambda*T);
15 C = sort(T * rand(k, 1));
16 D = poissrnd(alpha/beta, k, 1);
17

18 % For each cluster centre generate an inhomogenous PP.
19 allOff = [];
20 figure(1); clf; hold on;
21 colorOrder = get(gca, 'ColorOrder');
22

23 % Generate each cluster.
24 for c=1:k
25 color = colorOrder(mod(c, size(colorOrder, 1))+1,:);
26 numOffspring = poissrnd(alpha/beta);
27

28 off = C(c) + exprnd(1/beta, numOffspring, 1);
29 scatter(C(c), c, [], color, 'filled', 's');
30 s = scatter(off, c.*ones(size(off)), [], color);
31 allOff = [allOff; off];
32 end
33

34 points = sort([C; allOff]);
35

36 scatter(points, zeros(size(points)), 100, [0,0,0], 'x');
37 xlabel('t', 'interpreter', 'latex');
38 ylabel('Family Number', 'interpreter', 'latex');
39 a = axis(); axis([0, T, a(3), a(4)]);
40

41 set(gcf,'OuterPosition',[0,0,700,250])
42 export fig('..\images\hp cluster a.pdf', '-pdf', '-transparent');
43

44 %% Plot the conditional intensity function for this realisation.
45 figure(2); clf; hold on;
46 t = 0:0.01:T; lambdas = cif(t, points, lambda, alpha, beta);
47 plot(t, lambdas);

76 APPENDIX C. MATLAB IMPLEMENTATIONS

48 scatter(points, zeros(size(points)), 100, [0,0,0], 'x');
49 xlabel('t', 'interpreter', 'latex');
50 ylabel('$\lambdaˆ*(t)$', 'interpreter', 'latex');
51

52 set(gcf,'OuterPosition',[0,0,700,250])
53 export fig('..\images\hp cluster b.pdf', '-pdf', '-transparent');

C.2.4 Exact simulation of Hawkes process

1 function T = SimulateHawkes(lambda 0, mean jump, delta, K hat)
2 % Parameters:
3 % * lambda 0 - Starting intensity
4 % * mean jump - Amount intensity increases after an arrival
5 % * delta - Decay of intensity over time
6 % * K hat - Number of arrival times to simulate
7 % Reference: Exact simulation of Hawkes process
8 % with exponentially decaying intensity 2013
9 % http://ecp.ejpecp.org/article/view/2717

10 W = zeros(1, K hat);
11

12 a = lambda 0;
13 lambda Tplus = lambda 0;
14

15 for k = 1:K hat
16 u = rand;
17 D = 1 + delta*log(u)/(lambda Tplus - a);
18

19 if D > 0
20 S = min([-1/delta * log(D), -(1/a) * log(rand)]);
21 else
22 S = -(1/a) * log(rand);
23 end
24

25 W(k) = S;
26

27 lambda Tminus = (lambda Tplus-a) * exp(-delta * S) + a;
28 lambda Tplus = lambda Tminus + mean jump;
29 end
30

31 T = cumsum(W);
32 end

	Introduction
	Background
	Counting and point processes
	Poisson processes
	Conditional intensity functions
	Compensators

	Literature Review
	Hawkes process definition
	Hawkes conditional intensity function
	Immigration–birth representation
	Covariance and power spectral densities
	Generalisations of Hawkes processes
	Financial applications
	Financial contagion
	Mid-price changes and high-frequency trading

	Parameter Estimation
	Likelihood function derivation
	Simplifications for exponential decay
	Discussion

	Goodness of Fit
	Transformation to a Poisson process
	Tests for Poisson process
	Basic tests
	Test for independence
	Lewis test
	Brownian motion approximation test

	Simulation Methods
	Transformation methods
	Ogata's modified thinning algorithm
	Superposition of Poisson processes
	Other methods

	Conclusion
	Extra Proof Details
	Supplementary to Theorem 2 (part one)
	Supplementary to Theorem 2 (part two)

	Open Source Contributions
	R package: `Hawkes'
	Hawkes explanatory article

	MATLAB Implementations
	Goodness of fit
	Multiple tests
	Brownian motion approximation

	Simulation methods
	Inhomogeneous Poisson process by thinning
	Hawkes process by thinning
	Hawkes process by clustering
	Exact simulation of Hawkes process

