Efficient simulation for dependent rare events with applications to extremes

Patrick J. Laub

The University of Queensland \& Aarhus University
UNSW Statistics Seminar

19/05/17

Quick Bio

SE \rightarrow Math. Now based at University of Queensland \& Aarhus University, Denmark. Supervisors: Phil Pollett, Søren Asmussen

Coauthors: Leonardo Rojas-Nandayapa, Lars Nørvang Andersen

Inviter: Peter Straka

Outline

- Introduction of problems \& estimators
- Discussion of estimators \& improvements
- Efficiency results
- Limitations

First problem

For a random vector $\mathbf{X}=\left(X_{1}, \ldots, X_{d}\right)$ with maximum $M=\max _{i} X_{i}$, the first problem we consider is estimating

$$
\alpha(\gamma)=\mathbb{P}(M>\gamma)
$$

We construct estimators for this probability, which are in terms of

$$
E(\gamma)=\sum_{i=1}^{d} \mathbb{1}\left\{X_{i}>\gamma\right\}
$$

the random variable which counts the number of X_{i} which exceed γ.

First glance at estimators

Our two main estimators in this setting are

$$
\begin{aligned}
\widehat{\alpha}_{1}= & \sum_{i=1}^{d} \mathbb{P}\left(X_{i}>\gamma\right)+(1-E(\gamma)) \mathbb{1}\{E(\gamma) \geq 2\}, \text { and } \\
\widehat{\alpha}_{2}= & \sum_{i=1}^{d} \mathbb{P}\left(X_{i}>\gamma\right)-\sum_{i=1}^{d-1} \sum_{j=i+1}^{d} \mathbb{P}\left(X_{i}>\gamma, X_{j}>\gamma\right) \\
& +\left[1-E(\gamma)+\frac{E(\gamma)(E(\gamma)-1)}{2}\right] \mathbb{1}\left\{E_{r}(\gamma) \geq 3\right\} .
\end{aligned}
$$

Second problem

The next problem we consider is estimating

$$
\beta_{n}(\gamma):=\mathbb{E}[Y \mathbb{1}\{E(\gamma) \geq n\}]
$$

for $n=1, \ldots, d$ and some random variable Y. We do not make any assumptions of independence between the $\left\{X_{i}>\gamma\right\}$ events themselves or between the events and Y. The subcase of $Y=1$ a.s. has some interesting examples:

$$
\beta_{1}(\gamma)=\mathbb{P}(M>\gamma)=\alpha(\gamma), \quad \text { and } \quad \beta_{n}(\gamma)=\mathbb{P}\left(X_{(n)}>\gamma\right)
$$

where $X_{(1)} \geq X_{(2)} \geq \cdots \geq X_{(d)}$ are the order statistics of \mathbf{X}. The probability of a parallel circuit failing is a simple application for $\mathbb{P}\left(X_{(n)}>\gamma\right)$.

General setup

Let $A(\gamma)=\cup_{i=1}^{d} A_{i}(\gamma)$ be the union of events $A_{1}(\gamma), \ldots, A_{d}(\gamma)$ for an index parameter $\gamma \in \mathbb{R}$. We consider the problem of estimating $\mathbb{P}(A(\gamma))$ when the events are rare, that is, $\mathbb{P}(A(\gamma)) \rightarrow 0$ as $\gamma \rightarrow \infty$. Define

$$
\alpha(\gamma):=\mathbb{P}(A(\gamma)) \quad \text { and } \quad E(\gamma):=\sum_{i=1}^{d} \mathbb{1}\left\{A_{i}(\gamma)\right\} .
$$

Note that we recover our introductory example by having $A_{i}(\gamma)=\left\{X_{i}>\gamma\right\}$. Aside from this example, $A(\gamma)$ is quite general (a union of arbitrary events) and many interesting events arising in applied probability and statistics can be formulated as a union. The quantity $\beta_{n}(\gamma)$ is reminiscent of expected shortfall from risk management.

Inclusion-exclusion

$$
\begin{aligned}
\mathbb{P}(A \cup B \cup C)= & \mathbb{P}(A)+\mathbb{P}(B)+\mathbb{P}(C) \\
& -[\mathbb{P}(A, B)+\mathbb{P}(A, C)+\mathbb{P}(B, C)]+\mathbb{P}(A, B, C)
\end{aligned}
$$

Inclusion-exclusion

The inclusion-exclusion formula (IEF) provides a representation of α as a summation whose terms are decreasing in size. The formula is, for $A=\cup_{i} A_{i}$,

$$
\begin{aligned}
\alpha=\mathbb{P}(A) & =\sum_{i=1}^{d} \mathbb{P}\left(A_{i}\right)-\sum_{1=i<j}^{d} \mathbb{P}\left(A_{i}, A_{j}\right)+\cdots+(-1)^{d+1} \mathbb{P}\left(A_{1}, \ldots, A_{d}\right) \\
& =\sum_{i=1}^{d}(-1)^{i+1} \sum_{|| |=i} \mathbb{P}\left(\bigcap_{j \in l} A_{j}\right) .
\end{aligned}
$$

The IEF can rarely be used as its summands are increasingly difficult to calculate numerically. The $\mathbb{P}\left(A_{i}\right)$ terms are typically known, and the $\mathbb{P}\left(A_{i}, A_{j}\right)$ terms can frequently be calculated, however the remaining higher-dimensional terms are normally intractable for numerical integration algorithms (cf. the curse of dimensionality [asmussen2007stochastic]).

Bonferonni inequalities

Truncating the summation can lead to bias, and indeed by the Bonferroni inequalities we have:

$$
\begin{aligned}
\mathbb{P}(A)=\mathbb{P}\left(\cup_{i} A_{i}\right)=\alpha & \leq \sum_{i} \mathbb{P}\left(A_{i}\right) \quad \text { (Boole-Fréchet) } \\
\alpha & \geq \sum_{i} \mathbb{P}\left(A_{i}\right)-\sum_{i<j} \mathbb{P}\left(A_{i}, A_{j}\right) \\
\alpha & \leq \sum_{i} \mathbb{P}\left(A_{i}\right)-\sum_{i<j} \mathbb{P}\left(A_{i}, A_{j}\right)+\sum_{i<j<k} \mathbb{P}\left(A_{i}, A_{j}, A_{k}\right)
\end{aligned}
$$

This higher-order intractability motivates our estimators which use the IEF rewritten in terms of $E=\sum_{i} \mathbb{1}\left\{A_{i}\right\}$.

Constructing IEF estimators

Remember IEF:

$$
\alpha=\sum_{i=1}^{d}(-1)^{i+1} \sum_{|| |=i} \mathbb{P}\left(\bigcap_{j \in l} A_{j}\right)=\sum_{i=1}^{d}(-1)^{i+1} \mathbb{E}\left[\sum_{|| |=i} \mathbb{1}\left(\bigcap_{j \in l} A_{j}\right)\right]
$$

Proposition

$$
\text { For } i=1, \ldots, d, \quad \sum_{|| |=i} \mathbb{1}\left\{\cap_{j \in \mid} A_{j}\right\}=\binom{E}{i} \mathbb{1}\{E \geq i\}
$$

Proof.

$$
\sum_{|| |=i} \mathbb{1}\left\{\cap_{j \in I} A_{j}\right\}=\sum_{k=i}^{d} \sum_{|| |=i} \mathbb{1}\left\{\cap_{j \in I} A_{j}, E=k\right\}=\sum_{k=i}^{d}\binom{k}{i} \mathbb{1}\{E=k\}=\binom{E}{i} \mathbb{1}\{E \geq i\}
$$

Estimators

$$
\begin{aligned}
\mathbb{E}\left[\sum_{i=1}^{d}(-1)^{i-1}\binom{E}{i} \mathbb{1}\{E \geq i\}\right] & =\sum_{i=1}^{d}(-1)^{i-1} \mathbb{E}\left[\binom{E}{i} \mathbb{1}\{E \geq i\}\right] \\
& =\mathrm{IEF}_{1}+\mathrm{IEF}_{2}+\cdots+\mathrm{IEF}_{d} \\
& =\alpha
\end{aligned}
$$

We present estimators which deterministically calculate the first larger terms of the IEF and Monte Carlo (MC) estimate the remaining smaller terms using sample means of the above.

First estimator

We begin by constructing the single-replicate estimator $\widehat{\alpha}_{1}$ where the first summand is calculated and the remaining terms are estimated:

$$
\begin{aligned}
\widehat{\alpha}_{1}: & =\sum_{i} \mathbb{P}\left(A_{i}\right)+\sum_{i=2}^{d}\left[(-1)^{i-1}\binom{E}{i} \mathbb{1}\{E \geq i\}\right] \\
& =\sum_{i} \mathbb{P}\left(A_{i}\right)+(1-E) \mathbb{1}\{E \geq 2\}, \quad \text { using } \quad \sum_{k=0}^{n}(-1)^{k-1}\binom{n}{k}=0 .
\end{aligned}
$$

In identical fashion, the single-replicate estimator calculating the first two terms from the IEF is

$$
\begin{aligned}
\widehat{\alpha}_{2} & :=\sum_{i} \mathbb{P}\left(A_{i}\right)-\sum_{i<j} \mathbb{P}\left(A_{i}, A_{j}\right)+\sum_{i=3}^{d}\left[(-1)^{i-1}\binom{E}{i} \mathbb{1}\{E \geq i\}\right] \\
& =\sum_{i} \mathbb{P}\left(A_{i}\right)-\sum_{i<j} \mathbb{P}\left(A_{i}, A_{j}\right)+\left[1-E+\frac{E(E-1)}{2}\right] \mathbb{1}\{E \geq 3\}
\end{aligned}
$$

General form of the estimators

Thus, for $n \in\{1, \ldots, d-1\}$,

$$
\begin{equation*}
\widehat{\alpha}_{n}:=\sum_{i=1}^{n}(-1)^{i-1} \sum_{|| |=i} \mathbb{P}\left(\bigcap_{i \in I} A_{i}\right)+\left[\sum_{i=0}^{n}(-1)^{i}\binom{E}{i}\right] \mathbb{1}\{E \geq n+1\} . \tag{1}
\end{equation*}
$$

Properties of these estimators

Thus, $\left\{\widehat{\alpha}_{1}, \ldots, \widehat{\alpha}_{d-1}\right\}$ is a collection of estimators which allows the user to control the computational division of labour between numerical integration and Monte Carlo estimation. N.B. If we look at $\widehat{\alpha}_{0}$ we get the CMC estimator $\mathbb{1}\{E \geq 1\}$.

The $\widehat{\alpha}_{n}$ estimators are of decreasing variance in n, however each estimator carries the assumption that one can perform accurate numerical integration for 1 up to n dimensions. As numerical integration can be slow and unreliable in high dimensions we focus on $\widehat{\alpha}_{1}$, and also show the numerical performance of $\widehat{\alpha}_{2}$.

In practice, theses estimators will exhibit very modest improvements when compared against their truncated IEF counterparts. When combined with importance sampling the improvement is marked.

We do assume knowledge of marginal distributions.

Discussion of the $\widehat{\alpha}_{1}$ estimator

The estimator $\widehat{\alpha}_{1}$ has some nice interpretations. Recall the Boole-Fréchet inequalities

$$
\begin{equation*}
\max _{i} \mathbb{P}\left(A_{i}\right) \leq \alpha=\mathbb{P}(A) \leq \sum_{i} \mathbb{P}\left(A_{i}\right)=: \bar{\alpha} \tag{2}
\end{equation*}
$$

The stochastic part of $\widehat{\alpha}_{1}$ is an unbiased estimate of $\bar{\alpha}-\alpha \leq 0$. That is to say, $\widehat{\alpha}_{1} \mathrm{MC}$ estimates the difference between the target quantity α and its upper bound given by the Boole-Fréchet inequalities, $\bar{\alpha}$. Similarly, we often have

$$
\alpha(\gamma) \sim \sum_{i} \mathbb{P}\left(A_{i}(\gamma)\right),{ }^{1}
$$

for example when the A_{i} exhibit a weak dependence structure. In this case, we can say that $\widehat{\alpha}_{1} \mathrm{MC}$ estimates the difference between α and its (first-order) asymptotic expansion.

[^0]
Relation of the $\widehat{\alpha}_{n}$ estimators to control variates

An alternative construction of $\left\{\widehat{\alpha}_{1}, \ldots, \widehat{\alpha}_{d-1}\right\}$ is to add control variates to the crude Monte Carlo estimator $\widehat{\alpha}_{0}$. We begin by adding the control variate E to $\widehat{\alpha}_{0}$ with weight $\tau \in \mathbb{R}$:

$$
\widehat{\alpha}_{1}^{\tau}:=\mathbb{1}\{E \geq 1\}-\tau\left[E-\sum_{i} \mathbb{P}\left(A_{i}\right)\right]
$$

Setting $\tau=1$ means this estimator simplifies to $\widehat{\alpha}_{1}$. Next, we add the control variates E and $-\frac{1}{2} E(E-1)$ to $\widehat{\alpha}_{0}$, and setting the corresponding weights to 1 gives $\widehat{\alpha}_{2}$. This pattern goes on.

Importance sampling (first-order)

Standard IS theory says condition on $A=\cup_{i} A_{i}=\{E \geq 1\}$ occuring. We use a mixture distribution as a proposal. Say that we condition on A_{i} with probability

$$
p_{i}:=\frac{\mathbb{P}\left(A_{i}\right)}{\sum_{j} \mathbb{P}\left(A_{j}\right)}=\frac{\mathbb{P}\left(A_{i}\right)}{\bar{\alpha}}, \quad \text { for } i=1, \ldots, d
$$

Why? If $\mathbb{P}\left(A_{i}(\gamma), A_{j}(\gamma)\right)=\mathrm{o}\left(\mathbb{P}\left(A_{i}(\gamma)\right)\right)$ often occurs for all $i \neq j$, then

$$
\mathbb{P}\left(A_{i}(\gamma) \mid A(\gamma)\right)=\frac{\mathbb{P}\left(A_{i}(\gamma)\right)}{\sum_{j} \mathbb{P}\left(A_{j}(\gamma)\right)(1+\mathrm{o}(1))} \sim p_{i}(\gamma), \quad \text { as } \gamma \rightarrow \infty
$$

Now consider the measure

$$
\mathbb{Q}^{[1]}(\mathscr{A})=\sum_{i} p_{i} \mathbb{P}\left(\mathscr{A} \mid A_{i}\right) \quad \forall \mathscr{A} \in \mathcal{F}
$$

which induces the likelihood ratio of $L^{[1]}:=\mathrm{d} \mathbb{Q}^{[1]} / \mathrm{d} \mathbb{P}=\bar{\alpha} / E$. As

$$
\begin{gather*}
\bar{\alpha}+(1-E) \mathbb{1}\{E \geq 2\} L^{[1]}=\bar{\alpha}\left(1+\frac{1-E}{E}\right)=\frac{\bar{\alpha}}{E} \quad \text { under } \mathbb{Q}^{[1]} \\
\Rightarrow \widehat{\alpha}_{1}^{[1]}:=\frac{1}{R} \sum_{r=1}^{R} \frac{\bar{\alpha}}{E_{r}^{[1]}} \tag{3}
\end{gather*}
$$

where the $E_{r}^{[1]}$ are iid from $\mathbb{Q}^{[1]}$. Same as Adler et al. [adler1990introduction].

Importance sampling (second-order)

Continuing in the same pattern, consider the second-order IS distributions where $\{E \geq 2\}$ occurs almost surely, to be applied to $\widehat{\alpha}_{2}$. Say that we choose to condition on $A_{i} \cap A_{j}$ with probability

$$
p_{i j}:=\frac{\mathbb{P}\left(A_{i}, A_{j}\right)}{\sum_{m<n} \mathbb{P}\left(A_{m}, A_{n}\right)}=\frac{\mathbb{P}\left(A_{i}, A_{j}\right)}{q}, \quad \text { for } 1 \leq i<j \leq d
$$

defining $q:=\sum_{i<j} \mathbb{P}\left(A_{i}, A_{j}\right)$. Now consider the measure

$$
\mathbb{Q}^{[2]}(\mathscr{A})=\sum_{i<j} p_{i j} \mathbb{P}\left(\mathscr{A} \mid A_{i}, A_{j}\right) \quad \forall \mathscr{A} \in \mathcal{F},
$$

which induces a likelihood ratio of

$$
L^{[2]}:=\frac{\mathrm{d} \mathbb{Q}^{[2]}}{\mathrm{d} \mathbb{P}}=\frac{q}{\sum_{i<j} \mathbb{1}\left\{A_{i} A_{j}\right\}}=\frac{q}{\binom{E}{2}}=\frac{2 q}{E(E-1)}
$$

Thus, after simplifying, the estimator $\widehat{\alpha}_{2}$ under $\mathbb{Q}^{[2]}$ is

$$
\widehat{\alpha}_{2}^{[2]}:=\bar{\alpha}-\frac{2 q}{R} \sum_{r=1}^{R} \frac{1}{E_{r}^{[2]}} .
$$

Example: $\alpha(1)=\mathbb{P}\left(\max \left\{X_{1}, X_{2}\right\}>1\right)$

Region of interest

Example: $\alpha(1)=\mathbb{P}\left(\max \left\{X_{1}, X_{2}\right\}>1\right)$

First-order importance sampling

Example: $\alpha(1)=\mathbb{P}\left(\max \left\{X_{1}, X_{2}\right\}>1\right)$

Second-order importance sampling

Importance sampling (extra requirements)

First-order IS:

- can simulate from $\mathbb{P}\left(\cdot \mid A_{i}\right)$,
- can calculate the $\mathbb{P}\left(A_{i}\right)$.

Second-order IS:

- can simulate from $\mathbb{P}\left(\cdot \mid A_{i}, A_{j}\right)$,
- can calculate the $\mathbb{P}\left(A_{i}\right)$ and $\mathbb{P}\left(A_{i}, A_{j}\right)$.

Normally (at least for extremes) can calculate $\mathbb{P}\left(A_{i}\right)$ and $\mathbb{P}\left(A_{i}, A_{j}\right)$ with Mathematica or Matlab. The prohibitive part is being able to simulate from conditionals.

Second problem $-\beta_{n}$

Now, we turn our attention to the estimation of

$$
\beta_{n}:=\mathbb{E}[Y \mathbb{1}\{E \geq n\}]
$$

We start with β_{1} and the partition

$$
\begin{equation*}
A:=\bigcup_{i=1}^{d} A_{i}=A_{1} \cup\left(A_{1}^{\mathrm{c}} A_{2}\right) \cup \cdots \cup\left(A_{1}^{\mathrm{c}} \ldots A_{d-1}^{\mathrm{c}} A_{d}\right) \tag{5}
\end{equation*}
$$

This gives us

$$
\begin{aligned}
& \beta_{1}=\mathbb{E}\left[Y \mid A_{1}\right] \mathbb{P}\left(A_{1}\right)+\mathbb{E}\left[Y \mathbb{1}\left\{A_{1}\right\} \mid A_{2}\right] \mathbb{P}\left(A_{2}\right) \\
&+\cdots+\mathbb{E}\left[Y \mathbb{1}\left\{A_{1}^{\mathrm{c}} \ldots A_{d-1}^{\mathrm{c}}\right\} \mid A_{d}\right] \mathbb{P}\left(A_{d}\right) .
\end{aligned}
$$

If we assume it is possible to sample from the $\mathbb{P}\left(\cdot \mid A_{i}\right)$ conditional distributions (same as for $\widehat{\alpha}_{1}^{[1]}$) then each of these conditional expectations can be estimated by sample means:

$$
\begin{equation*}
\widehat{\beta}_{1}:=\sum_{i=1}^{d} \frac{\mathbb{P}\left(A_{i}\right)}{\lceil R / d\rceil} \sum_{r=1}^{\lceil R / d\rceil} Y_{i, r} \mathbb{1}\left\{A_{1}^{c} \ldots A_{i-1}^{c}\right\}_{i, r} \tag{6}
\end{equation*}
$$

Here, the $Y_{i, r}$ and $\mathbb{1}\{\cdot\}_{i, r}$ are sampled independently and conditional on A_{i}. The following proposition gives the partition of the event $\{E \geq i\}$:

Partition

Proposition

Consider a finite collection of events $\left\{A_{1}, \ldots, A_{d}\right\}$ and for each subset $I \subset\{1,2, \ldots, d\}$ define ${ }^{a}$

$$
B_{1}:=\bigcap_{j \in I} A_{j}, \quad C_{1}:=\bigcap_{\substack{k \notin I, k<\max \backslash}} A_{k}^{c} .
$$

Then

$$
\begin{equation*}
\{E \geq m\}=\bigcup_{|| |=m} B_{1}=\bigcup_{|| |=m} B_{1} C_{1} . \tag{7}
\end{equation*}
$$

Moreover, the collection of sets $\left\{B_{1} C_{1}:|| |=m\}\right.$ is disjoint.

[^1]
General estimators of β

This proposition implies that

$$
\beta_{n}=\mathbb{E}\left[Y \mathbb{1}\left\{\bigcup_{|| |=n} B_{l}\right\}\right]=\mathbb{E}\left[Y \mathbb{1}\left\{\bigcup_{|| |=n} B_{l} C_{l}\right\}\right]=\sum_{|| |=n} \mathbb{E}\left[Y \mathbb{1}\left\{C_{l}\right\} \mid B_{l}\right] \mathbb{P}\left(B_{l}\right)
$$

Therefore, if (i) reliable estimates of $\mathbb{P}\left(B_{l}\right)$ are available, and (ii) it is possible to simulate from the conditional measures $\mathbb{P}\left(\cdot \mid B_{l}\right)$, then the following is an unbiased estimator of $\mathbb{E}[Y \mathbb{1}\{E \geq n\}]$:

$$
\begin{equation*}
\widehat{\beta}_{n}: \left.=\sum_{|I|=n} \frac{\mathbb{P}\left(B_{l}\right)}{\left\lceil R /\binom{d}{n}\right\rceil} \sum_{r=1}^{\left\lceil R /\binom{d}{n}\right\rceil} Y_{l, r} \mathbb{1}\left\{C_{l}\right\} \right\rvert\,, r . \tag{8}
\end{equation*}
$$

Here, similar to before, $Y_{l, r}$ and $\mathbb{1}\{\cdot\}_{l, r}$ denote independent sampling conditioned on B_{l}.

Efficiency (definition)

Definition

An estimator \hat{p}_{γ} of some rare probability p_{γ} which satisfies $\forall \varepsilon>0$

$$
\limsup _{\gamma \rightarrow \infty} \frac{\operatorname{Var} \widehat{p}_{\gamma}}{p_{\gamma}^{2-\varepsilon}}=0 \quad \limsup _{\gamma \rightarrow \infty} \frac{\operatorname{Var} \hat{p}_{\gamma}}{p_{\gamma}^{2}}<\infty \quad \quad \limsup _{\gamma \rightarrow \infty} \frac{\operatorname{Var} \hat{p}_{\gamma}}{p_{\gamma}^{2}}=0
$$

has logarithmic efficiency, bounded relative error, or vanishing relative error respectively.

Efficiency (for our estimators)

Proposition

If for the estimator $\widehat{\alpha}_{1}(\forall \varepsilon>0)$

$$
\limsup _{\gamma \rightarrow \infty} \frac{\max _{i<j} \mathbb{P}\left(A_{i}(\gamma), A_{j}(\gamma)\right)}{\max _{k} \mathbb{P}\left(A_{k}(\gamma)\right)^{2-\varepsilon}}=0, \quad \limsup _{\gamma \rightarrow \infty} \frac{\max _{i<j} \mathbb{P}\left(A_{i}(\gamma), A_{j}(\gamma)\right)}{\max _{k} \mathbb{P}\left(A_{k}(\gamma)\right)^{2}}<\infty
$$

then the estimator has $L E, B R E$ respectively.

Proposition

The estimator $\widehat{\beta}_{n}(\gamma)$ has BRE if

$$
\limsup _{\gamma \rightarrow \infty} \frac{\max _{|I|=n} \mathbb{P}\left(B_{l}\right)}{\beta_{n}(\gamma)}<\infty
$$

Efficiency results

- If the A_{i} are independent events then the estimator $\widehat{\alpha}_{1}$ has BRE.
- More generally? Again consider rare maxima, and to simplify, consider $X_{i} \stackrel{\mathcal{D}}{=} X_{j}$.
- If \exists asymptotic dependence $(\lambda>0)$, then $\widehat{\alpha}_{1}$ doesn't have BRE.
- If asymptotic independence $(\lambda=0)$, need to look at residual tail index η :
- BRE if $\eta<1 / 2$.
- LE if $\eta=1 / 2$.
- For exchangable Archimedean copulas with generator ψ, we have BRE if $\psi^{\leftarrow} \in C^{2}$ and $\left(\psi^{\leftarrow}\right)^{\prime \prime}$ is bounded at 0 .
- For $\mathbf{X} \sim \mathcal{E L} \mathcal{L}(\mu, \boldsymbol{\Sigma}, F)$ where $F \in \operatorname{MDA}($ Gumbel $)$, we have conditions for when $\widehat{\alpha}_{1}$ has LE and when BRE. (This gives normal case.)
- The estimator $\left(\widehat{\beta_{1} \ddagger \alpha}\right)$ from has BRE.

Asymptotic independence

Look at

$$
\lambda_{i j}=\lim _{v \rightarrow 1} \mathbb{P}\left(X_{i}>v \mid X_{j}>v\right)=\lim _{v \rightarrow 1} \frac{1-C_{i j}(v, v)}{1-v}
$$

where $\lambda_{i j} \in[0,1]$ is called the (upper) tail dependence parameter (or coefficient).
The canonical examples are the (non-degenerate) bivariate normal distribution for AI , and the bivariate Student t distribution for AD.

For $\widehat{\alpha}_{1}$ to have BRE, all pairs in \mathbf{X} must exhibit AI. This is a necessary but not sufficient condition, therefore we will employ a more refined tail dependence measurement.

Residual tail index

Ledford and Tawn first noted that the joint survivor functions for a wide array of bivariate distributions satisfy

$$
\mathbb{P}\left(X_{i}>\gamma, X_{j}>\gamma\right) \sim L(\gamma) \gamma^{-1 / \eta} \quad \text { as } \gamma \rightarrow \infty
$$

for a slowly-varying $L(\gamma)$ and an $\eta \in(0,1]$.
In other words, this says that $\mathbb{P}\left(X_{i}>\gamma, X_{j}>\gamma\right)$ is regularly-varying with index $1 / \eta$. The index is called the residual tail index (or, confusingly, the coefficient of tail dependence).

Efficiency (using residual tail index)

Proposition

If the Ledford \& Tawn form is satisfied for the maximal pair of \mathbf{X}, that is,

$$
\max _{i<j} \mathbb{P}\left(X_{i}>\gamma, X_{j}>\gamma\right) \sim L(\gamma) \gamma^{-1 / \eta} \quad \text { as } \gamma \rightarrow \infty
$$

then the estimator $\widehat{\alpha}_{1}$ has:
© BRE if $\eta<1 / 2$ or if $\eta=1 / 2$ and $L(\gamma) \nrightarrow \infty$ as $\gamma \rightarrow \infty$,

- $L E$ if $\eta=1 / 2$.

Proof.

$$
\limsup _{\gamma \rightarrow \infty} \frac{\max _{i<j} \mathbb{P}\left(X_{i} \geq \gamma, X_{j} \geq \gamma\right)}{\max _{k} \mathbb{P}\left(X_{k} \geq \gamma\right)^{2-\varepsilon}}=\limsup _{\gamma \rightarrow \infty} \frac{L(\gamma) \gamma^{-1 / \eta}}{\left(\gamma^{-1}\right)^{2-\varepsilon}}=\limsup _{\gamma \rightarrow \infty} L(\gamma) \gamma^{2-\frac{1}{\eta}-\varepsilon}=0
$$

Copulas and their residual tail indices

Table: Residual tail dependence index η and $L(x)$ for various copulas. This is a subset of Table 1 of [heffernan2000directory] (their row numbers are preserved).

$\#$	Name	η	$L(x)$
1	Ali-Mikhail-Haq	0.5	$1+\tau$
2	BB10 in Joe	0.5	$1+\theta / \tau$
3	Frank	0.5	$\delta /\left(1-\mathrm{e}^{-\delta}\right)$
4	Morgenstern	0.5	$1+\tau$
5	Plackett	0.5	δ
6	Crowder	0.5	$1+(\theta-1) / \tau$
7	BB2 in Joe	0.5	$\theta(\delta+1)+1$
8	Pareto	0.5	$1+\delta$
9	Raftery	0.5	$\delta /(1-\delta)$

(a) Copulas with BRE.

$\#$	Name	η	$L(x)$
11	Joe	1	$2-2^{1 / \delta}$
12	BB8 in Joe	1	$2-2(1-\delta)^{\theta-1}$
13	BB6 in Joe	1	$2-2^{1 /(\delta \theta)}$
14	Extreme value	1	$2-V(1,1)$
15	B11 in Joe	1	δ
16	BB1 in Joe	1	$2-2^{1 / \delta}$
17	BB3 in Joe	1	$2-2^{1 / \theta}$
18	BB4 in Joe	1	$2^{-1 / \delta}$
19	BB7 in Joe	1	$2-2^{1 / \theta}$

(b) Copulas without BRE.

Archimedean copulas

$$
C\left(u_{1}, \ldots, u_{n}\right)=\psi^{\leftarrow}\left(\psi\left(u_{1}\right)+\cdots+\psi\left(u_{n}\right)\right)
$$

Theorem (Thm. 3.4 of [charpentier2009tails])

Let $\left(U_{1}, \ldots, U_{n}\right) \sim C$ where C is an Archimedean copula with generator ψ. If $\psi \leftarrow$ is twice continuously differentiable and its second derivative is bounded at 0 then $\forall i \neq j$

$$
\lim _{u \rightarrow 0} \frac{\mathbb{P}\left(U_{i} \geq 1-u x_{1}, U_{j} \geq 1-u x_{2}\right)}{u^{2}}<\infty
$$

for any $0<x_{1}, x_{2}<\infty$.

Corollary

Consider using $\widehat{\alpha}_{1}$ for a distribution with common marginal distributions and a copula C. If C satisfies the conditions of Theorem 2 then $\widehat{\alpha}_{1}$ has BRE.

Efficiency (cases)

- If the A_{i} are independent events then the estimator $\widehat{\alpha}_{1}$ has BRE.
- More generally? Again consider rare maxima, and to simplify, consider $X_{i} \stackrel{\mathcal{D}}{=} X_{j}$.
- If \exists asymptotic dependence $(\lambda>0)$, then $\widehat{\alpha}_{1}$ doesn't have BRE.
- If asymptotic independence $(\lambda=0)$, need to look at residual tail index η :
- BRE if $\eta<1 / 2$.
- LE if $\eta=1 / 2$.
- For exchangable Archimedean copulas with generator ψ, we have BRE if $\psi^{\leftarrow} \in C^{2}$ and $\left(\psi^{\leftarrow}\right)^{\prime \prime}$ is bounded at 0 .
- For $\mathbf{X} \sim \mathcal{E L} \mathcal{L}(\mu, \boldsymbol{\Sigma}, F)$ where $F \in \operatorname{MDA}($ Gumbel $)$, we have conditions for when $\widehat{\alpha}_{1}$ has LE and when BRE. (This gives normal case.)
- The estimator $\left(\widehat{\beta_{1} \ddagger \alpha}\right)$ from has BRE.

Numerical example: multivariate normal ($R=10^{6}$)

Estimators	2	4	γ	6
	$5.633 \mathrm{e}-02$	$1.095 \mathrm{e}-04$	$3.838 \mathrm{e}-09$	$2.481 \mathrm{e}-15$
$\widehat{\alpha}_{0}$	$5.651 \mathrm{e}-02$	$1.140 \mathrm{e}-04$	0^{*}	0^{*}
$\bar{\alpha}$	$9.100 \mathrm{e}-02$	$1.267 \mathrm{e}-04$	$3.946 \mathrm{e}-09$	$2.488 \mathrm{e}-15$
$\bar{\alpha}-q$	$4.000 \mathrm{e}-02$	$1.055 \mathrm{e}-04$	$3.827 \mathrm{e}-09$	$2.480 \mathrm{e}-15$
$\widehat{\alpha}_{1}$	$5.650 \mathrm{e}-02$	$1.047 \mathrm{e}-04$	$3.946 \mathrm{e}-09^{*}$	$2.488 \mathrm{e}-15^{*}$
$\widehat{\alpha}_{2}$	$5.605 \mathrm{e}-02$	$1.075 \mathrm{e}-04$	$3.827 \mathrm{e}-09^{*}$	$2.480 \mathrm{e}-15^{*}$
$\widehat{\alpha}_{1}^{1]}$	$5.637 \mathrm{e}-02$	$1.096 \mathrm{e}-04$	$3.837 \mathrm{e}-09$	$2.481 \mathrm{e}-15$
$\widehat{\alpha}_{2}^{[2]}$	$5.633 \mathrm{e}-02$	$1.095 \mathrm{e}-04$	$3.838 \mathrm{e}-09$	$2.481 \mathrm{e}-15$
$\left(\frac{\beta_{1} \ddagger \alpha}{} \ddagger\right.$	$5.634 \mathrm{e}-02$	$1.095 \mathrm{e}-04$	$3.838 \mathrm{e}-09$	$2.480 \mathrm{e}-15$
$\left(\widehat{\beta}_{2} \ddagger \alpha\right)$	$5.631 \mathrm{e}-02$	$1.095 \mathrm{e}-04$	$3.838 \mathrm{e}-09$	$2.481 \mathrm{e}-15$

Table: Estimates of $\mathbb{P}(M>\gamma)$ where $M=\max _{i} X_{i}$ and $\mathbf{X} \sim \mathcal{N}_{4}\left(\mathbf{0}_{4}, \boldsymbol{\Sigma}\right), \rho=0.75$.

Numerical example: multivariate normal $\left(R=10^{6}\right)$

Estimators	2	4	6	8
	$3.109 \mathrm{e}-03$	$4.075 \mathrm{e}-02$	1^{*}	1^{*}
$\bar{\alpha}$	$6.154 \mathrm{e}-01$	$1.566 \mathrm{e}-01$	$2.822 \mathrm{e}-02$	$3.142 \mathrm{e}-03$
$\bar{\alpha}-q$	$2.899 \mathrm{e}-01$	$3.665 \mathrm{e}-02$	$2.827 \mathrm{e}-03$	$1.147 \mathrm{e}-04$
$\widehat{\alpha}_{1}$	$2.977 \mathrm{e}-03$	$4.429 \mathrm{e}-02$	$2.822 \mathrm{e}-02^{*}$	$3.142 \mathrm{e}-03^{*}$
$\widehat{\alpha}_{2}$	$5.077 \mathrm{e}-03$	$1.839 \mathrm{e}-02$	$2.827 \mathrm{e}-03^{*}$	$1.147 \mathrm{e}-04^{*}$
$\widehat{\alpha}_{1}^{[1]}$	$6.918 \mathrm{e}-04$	$4.639 \mathrm{e}-04$	$1.747 \mathrm{e}-04$	$2.192 \mathrm{e}-05$
$\widehat{\alpha}_{2}^{[]}$	$7.838 \mathrm{e}-08$	$8.647 \mathrm{e}-05$	$1.237 \mathrm{e}-05$	$4.010 \mathrm{e}-08$
$\left(\frac{\beta_{1} \ddagger \alpha}{} \ddagger\right.$	$6.564 \mathrm{e}-05$	$7.046 \mathrm{e}-05$	$6.227 \mathrm{e}-05$	$4.362 \mathrm{e}-05$
$\left(\widehat{\beta}_{2} \ddagger \alpha\right)$	$3.493 \mathrm{e}-04$	$1.593 \mathrm{e}-05$	$6.883 \mathrm{e}-06$	$3.340 \mathrm{e}-07$

Table: Relative errors of the estimates of $\mathbb{P}(M>\gamma)$ where $\mathbf{X} \sim \mathcal{N}_{4}\left(\mathbf{0}_{4}, \boldsymbol{\Sigma}\right), \rho=0.75$.

Numerical example: multivariate Laplace $\left(R=10^{6}\right)$

Estimators	6	8	γ	10
	$4.093 \mathrm{e}-04$	$2.435 \mathrm{e}-05$	$1.442 \mathrm{e}-06$	$8.526 \mathrm{e}-08$
$\widehat{\alpha}_{0}$	$3.910 \mathrm{e}-04$	$2.000 \mathrm{e}-05$	$2.000 \mathrm{e}-06$	0^{*}
$\bar{\alpha}$	$4.130 \mathrm{e}-04$	$2.441 \mathrm{e}-05$	$1.443 \mathrm{e}-06$	$8.527 \mathrm{e}-08$
$\bar{\alpha}-q$	$4.093 \mathrm{e}-04$	$2.435 \mathrm{e}-05$	$1.442 \mathrm{e}-06$	$8.526 \mathrm{e}-08$
$\widehat{\alpha}_{1}$	$4.120 \mathrm{e}-04$	$2.441 \mathrm{e}-05^{*}$	$1.443 \mathrm{e}-06^{*}$	$8.527 \mathrm{e}-08^{*}$
$\widehat{\alpha}_{2}$	$4.093 \mathrm{e}-04^{*}$	$2.435 \mathrm{e}-05^{*}$	$1.442 \mathrm{e}-06^{*}$	$8.526 \mathrm{e}-08^{*}$
$\widehat{\alpha}_{1}^{[1]}$	$4.093 \mathrm{e}-04$	$2.435 \mathrm{e}-05$	$1.442 \mathrm{e}-06$	$8.526 \mathrm{e}-08$
$\left(\widehat{\beta}_{1} \ddagger \alpha\right)$	$4.093 \mathrm{e}-04$	$2.435 \mathrm{e}-05$	$1.442 \mathrm{e}-06$	$8.526 \mathrm{e}-08$

Table: Estimates of $\mathbb{P}(M>\gamma)$ where $M=\max _{i} X_{i}$ and $\mathbf{X} \sim \mathcal{L}, d=4$.

Numerical example: multivariate Laplace $\left(R=10^{6}\right)$

Estimators	6	8	γ		
	6	10	12		
$\widehat{\alpha}_{0}$	$4.472 \mathrm{e}-02$	$1.786 \mathrm{e}-01$	$3.873 \mathrm{e}-01$	1^{*}	
$\bar{\alpha}$	$8.959 \mathrm{e}-03$	$2.473 \mathrm{e}-03$	$6.987 \mathrm{e}-04$	$2.003 \mathrm{e}-04$	
$\bar{\alpha}-q$	$8.067 \mathrm{e}-05$	$8.266 \mathrm{e}-06$	$8.757 \mathrm{e}-07$	$9.506 \mathrm{e}-08$	
$\widehat{\alpha}_{1}$	$6.516 \mathrm{e}-03$	$2.473 \mathrm{e}-03^{*}$	$6.987 \mathrm{e}-04^{*}$	$2.003 \mathrm{e}-04^{*}$	
$\widehat{\alpha}_{2}$	$8.067 \mathrm{e}-05^{*}$	$8.266 \mathrm{e}-06^{*}$	$8.757 \mathrm{e}-07^{*}$	$9.506 \mathrm{e}-08^{*}$	
$\widehat{\alpha}_{1}^{[1]}$	$8.470 \mathrm{e}-06$	$1.023 \mathrm{e}-05$	$3.019 \mathrm{e}-05$	$1.577 \mathrm{e}-05$	
$\left(\beta_{1} \ddagger \alpha\right)$	$4.515 \mathrm{e}-05$	$2.948 \mathrm{e}-05$	$2.151 \mathrm{e}-06$	$2.833 \mathrm{e}-06$	

Table: Relative errors of the estimates of $\mathbb{P}(M>\gamma)$ where $\mathbf{X} \sim \mathcal{L}, d=4$.

Multivariate Laplace

Let $\mathbf{X} \sim \mathcal{L}$. We can define this distribution by

$$
\mathbf{X} \stackrel{\mathcal{D}}{=} \sqrt{R} \mathbf{Y}, \quad \text { where } \mathbf{Y} \sim \mathcal{N}_{d}(\mathbf{0}, \mathbf{I}), R \sim \mathcal{E}(1), \mathbf{Y} \Perp R .
$$

The distribution has been applied in a financial context [huang2003rare], and is examined in [eltoft2006multivariate, kotz2001asymmetric]. From the former we have that the density of \mathcal{L} is

$$
f_{\mathbf{x}}(\mathbf{x})=2(2 \pi)^{-d / 2} K_{(d / 2)-1}\left(\sqrt{2 \mathbf{x}^{\top} \mathbf{x}}\right)\left(\sqrt{\frac{1}{2} \mathbf{x}^{\top} \mathbf{x}}\right)^{1-(d / 2)}
$$

where $K_{n}(\cdot)$ denotes the modified Bessel function of the second kind of order n.
Sampling $\mathbf{X}_{-i} \mid X_{i}>\gamma$ for the Laplace distribution

- $X_{i} \leftarrow \mathcal{E}(\sqrt{2})$
- $Y_{i, X_{i}} \leftarrow \mathcal{I G}\left(\sqrt{2}\left|X_{i}\right|, 2 X_{i}^{2}\right)$.
- $\mathbf{Y}_{-i} \leftarrow \mathcal{N}_{d-1}\left(\mathbf{0}, \mathbf{I}_{p-1}\right)$.
- return $X_{i} \mathbf{Y}_{-i} / Y_{i, X_{i}}$.

Discussion

We begin with some trends which we expected to find in the results:

- all estimators outperform crude Monte Carlo $\widehat{\alpha}_{0}$,
- the estimators which calculate $\mathbb{P}\left(X_{i}>\gamma\right)$ outperform those which do not,
- the estimators which calculate $\mathbb{P}\left(X_{i}>\gamma, X_{j}>\gamma\right)$ outperform those which only use the univariate $\mathbb{P}\left(X_{i}>\gamma\right)$,
- the importance sampling estimators improve upon their original counterparts,
- the second-order IS improves upon the first-order IS.

Also noticed in the performance of the $\widehat{\alpha}$ estimators:

- the $\widehat{\alpha}_{1}$ and $\widehat{\alpha}_{2}$ estimators often degenerated (i.e. had zero variance) to $\bar{\alpha}$ and $\bar{\alpha}-q$ respectively,
- the degeneration begin for smaller γ when the \mathbf{X} had a weaker dependence structure.

Limitations

We do assume knowledge of marginal distributions. If we just have joint pdf...
Asymptotic properties \nRightarrow finite-term accuracy
Who actually wants to estimate probabilities of events under 10^{-10} ?
Who actually believes probability estimates of events under 10^{-10} ?

Limitations

We do assume knowledge of marginal distributions. If we just have joint pdf...
Asymptotic properties \nRightarrow finite-term accuracy
Who actually wants to estimate probabilities of events under 10^{-10} ?
Who actually believes probability estimates of events under 10^{-10} ?

[^0]: ${ }^{1}$ Using the standard notation that $f(x) \sim g(x)$ means $\lim _{x \rightarrow \infty} f(x) / g(x)=1$.

[^1]: ${ }^{a}$ Using the convention that $\cap_{\emptyset}=\Omega$.

